Patents Assigned to Japan Metals & Chemicals Co. Ltd.
  • Publication number: 20250137104
    Abstract: A hydrogen absorbing alloy suitable for a negative electrode of an alkaline storage battery is used for an alkaline storage battery, and this hydrogen absorbing alloy is an alloy that is composed mainly of crystal phases of an A5B19 phase and an A2B7 phase and is represented by the following General Formula (A): (La1-a-bCeaSmb)1-cMgcNidMeTf??(A), where M, T, and suffixes a, b, c, d, e, and f in Formula (A) meet the following conditions: M: at least one element selected from Al, Zn, Sn, and Si; T: at least one element selected from Cr, Mo, and V; 0<a?0.10; 0?b<0.15; 0.08?c?0.24; 0.03?e?0.14; 0?f?0.05; and 3.55?d+e+f?3.80.
    Type: Application
    Filed: June 22, 2022
    Publication date: May 1, 2025
    Applicant: JAPAN METALS AND CHEMICALS CO., LTD.
    Inventors: Saki NOTOYAMA, Tomoki SOUMA, Katsuyuki KUDO, Ryoji SUZUKI, Takao SAWA
  • Patent number: 12272819
    Abstract: A hydrogen storage alloy suitable for a negative electrode of an on-board alkaline storage battery, an alkaline storage battery using this hydrogen storage alloy, and a vehicle; wherein a fine-grained hydrogen storage alloy is used for an alkaline storage battery that has a crystal structure of an A2B7-type structure as a main phase and is represented by a general formula: (La1-aSma)1-bMgbNicAldCre (where suffixes a, b, c, d, and e meet the following conditions: 0?a?0.35, 0.15?b?0.30, 0.02?d?0.10, 0?e?0.10, 3.20?c+d+e?3.50, and 0<a+e), and an alkaline storage battery using this hydrogen storage alloy for a negative electrode. A vehicle also includes this alkaline storage battery as an electricity supply source for a motor.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: April 8, 2025
    Assignees: JAPAN METALS & CHEMICALS CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Takao Sawa, Saki Notoyama, Tomoki Souma, Katsuyuki Kudo, Takuya Watanabe, Masato Hozumi, Motoyoshi Okumura, Masashi Kodama, Takuro Kikuchi, Takeo Okanishi, Atsushi Minagata, Shuhei Mochida, Hiroyuki Sasaki, Satoshi Kono
  • Patent number: 12266791
    Abstract: A hydrogen storage alloy suitable for a negative electrode of an alkaline storage battery is provided. The hydrogen storage alloy provided is a hydrogen storage alloy used for an alkaline storage battery that has, as a main phase, one or two crystal structures selected from an A2B7-type structure and an AB3-type structure, and that is represented by a general formula: (La1?a?bCeaSmb)1?cMgcNidAleCrf (where suffixes a, b, c, d, e, and f in this formula (1) meet the following conditions: 0<a?0.15; 0?b?0.15; 0.17?c?0.32; 0.02?e?0.10; 0?f?0.05; and 2.95?d+e+f?3.50.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: April 1, 2025
    Assignee: JAPAN METALS AND CHEMICALS CO., LTD.
    Inventors: Takao Sawa, Saki Notoyama, Tomoki Souma, Katsuyuki Kudo, Takuya Watanabe
  • Patent number: 12024757
    Abstract: A hydrogen storage alloy suitable for a negative electrode of an on-board alkaline storage battery, and an alkaline storage battery using the alloy, which has an AB3-type crystal structure as a main phase, represented by: (SmxLayRz)1-a-bMgaTbNicCodMe. (R is selected from Pr, Nd; T is selected from Ti, Zr, Hf; M is selected from V, Nb, Ta, Cr, Mo, W, Mn, Fe, Cu, Al, Si, P, B; the following conditions are met: 0<x<1.0, 0<y<1.0, 0.8?x+y?1.0, x+y+z=1.0; 0.93?(x?y)·(1?a?b)+4.5(a+b)?1.62, 0<a?0.45, 0?b?0.05, 0?d?0.7, 0?e?0.15, 2.85?c+d+e?3.15 and 0.01?d+e).
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: July 2, 2024
    Assignees: JAPAN METALS AND CHEMICALS CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takao Sawa, Saki Notoyama, Naoyoshi Terashita, Katsuyuki Kudo, Makio Kon, Masashi Kodama, Hiroshi Nishiyama
  • Publication number: 20230076463
    Abstract: A hydrogen storage alloy suitable for a negative electrode of an alkaline storage battery is provided. The hydrogen storage alloy provided is a hydrogen storage alloy used for an alkaline storage battery that has, as a main phase, one or two crystal structures selected from an A2B7-type structure and an AB3-type structure, and that is represented by a general formula: (La1-a-bCeaSmb)1-cMgcNidAleCrf (where suffixes a, b, c, d, e, and f in this formula (1) meet the following conditions: 0<a?0.15; 0?b?0.15; 0.17?c?0.32; 0.02?e?0.10; 0?f?0.05; and 2.95?d+e+f?3.50.
    Type: Application
    Filed: February 16, 2021
    Publication date: March 9, 2023
    Applicant: JAPAN METALS AND CHEMICALS CO., LTD.
    Inventors: Takao SAWA, Saki NOTOYAMA, Tomoki SOUMA, Katsuyuki KUDO, Takuya WATANABE
  • Patent number: 11495804
    Abstract: An air electrode catalyst for an air secondary battery includes a pyrochlore-type composite oxide having two or more crystal structures having a different amount of oxygen. A battery, according to some embodiments, includes an electrode group including an air electrode and a negative electrode stacked with a separator therebetween, and a container accommodating the electrode group along with an alkali electrolyte solution, wherein the air electrode includes the air electrode catalyst. The air electrode catalyst may have a pyrochlore-type composite oxide having a crystal structure represented by Bi2Ru2O6.92 and a crystal structure represented by Bi2Ru2O7.33.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: November 8, 2022
    Assignees: FDK CORPORATION, JAPAN METALS AND CHEMICALS CO., LTD.
    Inventors: Shohei Unoki, Takeshi Kajiwara, Takahiro Endo, Shigekazu Yasuoka, Yoshikatsu Watanabe
  • Publication number: 20220190327
    Abstract: A hydrogen storage alloy suitable for a negative electrode of an on-board alkaline storage battery, an alkaline storage battery using this hydrogen storage alloy, and a vehicle; wherein a fine-grained hydrogen storage alloy is used for an alkaline storage battery that has a crystal structure of an A2B7-type structure as a main phase and is represented by a general formula: (La1-aSma)1-bMgbNicAldCre (where suffixes a, b, c, d, and e meet the following conditions: 0?a?0.35, 0.15?b?0.30, 0.02?d?0.10, 0?e?0.10, 3.20?c+d+e?3.50, and 0<a+e), and an alkaline storage battery using this hydrogen storage alloy for a negative electrode. A vehicle also includes this alkaline storage battery as an electricity supply source for a motor.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 16, 2022
    Applicants: JAPAN METALS AND CHEMICALS CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Takao SAWA, Saki NOTOYAMA, Tomoki SOUMA, Katsuyuki KUDO, Takuya WATANABE, Masato HOZUMI, Motoyoshi OKUMURA, Masashi KODAMA, Takuro KIKUCHI, Takeo OKANISHI, Atsushi MINAGATA, Shuhei MOCHIDA, Hiroyuki SASAKI, Satoshi KONO
  • Publication number: 20210408535
    Abstract: A hydrogen storage alloy suitable for a negative electrode of an on-board alkaline storage battery, and an alkaline storage battery using the alloy, which has an AB3-type crystal structure as a main phase, represented by: (SmxLayRz)1?a?bMgaTbNicCodMe. (R is selected from Pr, Nd; T is selected from Ti, Zr, Hf; M is selected from V, Nb, Ta, Cr, Mo, W, Mn, Fe, Cu, Al, Si, P, B; the following conditions are met: 0<x<1.0, 0<y<1.0, 0.8?x+y?1.0, x+y+z=1.0; 0.93?(x?y)·(1?a?b)+4.5(a+b)?1.62, 0<a?0.45, 0?b?0.05, 0?d?0.7, 0?e?0.15, 2.85?c+d+e?3.15 and 0.01?d+e).
    Type: Application
    Filed: October 1, 2019
    Publication date: December 30, 2021
    Applicants: JAPAN METALS AND CHEMICALS CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takao SAWA, Saki NOTOYAMA, Naoyoshi TERASHITA, Katsuyuki KUDO, Makio KON, Masashi KODAMA, Hiroshi NISHIYAMA
  • Patent number: 8475608
    Abstract: Magnesium-based hydrogen storage alloys having metallic magnesium (Mg) and a magnesium-containing intermetallic compound (MgxMy wherein y is 1?x) and containing not less than 60 mass-% of magnesium in total, and having a phase of a primarily crystallized magnesium-containing intermetallic compound in its solidification structure.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: July 2, 2013
    Assignee: Japan Metals and Chemicals Co., Ltd.
    Inventors: Masahito Osawa, Hidenori Tomioka, Naoyoshi Terashita, Noboru Hayami, Shigeru Tsunokake
  • Patent number: 8141739
    Abstract: [Object] A safe hydrogen storage tank in a highly reliable form where it is difficult for fatigue failure to occur is provided as a hydrogen storage tank where a cartridge is filled with a hydrogen occluding substance and contained within an integrally molded liner made of a metal.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: March 27, 2012
    Assignees: Samtech Corporation, Japan Metals & Chemicals Co., Ltd.
    Inventors: Yoshiki Sakaguchi, Hideaki Nishiwaki, Naoki Sakaguchi, Takeshi Yamamoto, Shigeru Tsunokake, Tatsuya Fuura, Shogo Watanabe, Yasumasa Maeda
  • Patent number: 7988800
    Abstract: In order to accurately and efficiently alloy a Mg-REM-Ni based hydrogen-absorbing alloy in accordance with a target composition, which was difficult in the industrial production by the conventional technique, a rare earth element starting material and a nickel starting material are firstly melted in a melting furnace to form a melt of REM-Ni alloy, and then a magnesium starting material is added to the alloy melt and an interior of the melting furnace is kept at a given pressure to form a melt of Mg-REM-Ni alloy, and thereafter the alloy melt is cooled and solidified at a given cooling rate to produce a Mg-REM-Ni based hydrogen-absorbing alloy.
    Type: Grant
    Filed: February 21, 2005
    Date of Patent: August 2, 2011
    Assignee: Japan Metals and Chemicals Co., Ltd.
    Inventors: Masahito Osawa, Katsuyuki Kudo, Akihito Maeda, Seiji Takahashi
  • Publication number: 20090007728
    Abstract: In a method for producing an alloy containing a metal of a low melting point, a low boiling point and a high vapor pressure such as Mg, Ca, Li, Zn, Mn, Sr or the like, a helium containing gas is used as an atmosphere gas for the melting. As a result, the alloy containing the above metal can be produced as an alloy having a targeted chemical composition precisely and safely at a low cost without causing the risk of firing, contamination or the like by active metal fine powder being vaporized. Furthermore, by using the helium containing gas as the atmosphere gas, the quench-solidification of the molten metal can be conducted due to a high thermal conductivity inherent to the helium gas, so that a special alloy can be produced even by the usual melting apparatus.
    Type: Application
    Filed: March 2, 2006
    Publication date: January 8, 2009
    Applicants: JAPAN METALS AND CHEMICALS CO., LTD, National Institute of Advanced Industrial Science and Technology
    Inventors: Etsuo Akiba, Hirotoshi Enoki, Naoyoshi Terashita, Shigeru Tsunokake
  • Publication number: 20070119524
    Abstract: In order to accurately and efficiently alloy a Mg-REM-Ni based hydrogen-absorbing alloy in accordance with a target composition, which was difficult in the industrial production by the conventional technique, a rare earth element starting material and a nickel starting material are firstly melted in a melting furnace to form a melt of REM-Ni alloy, and then a magnesium starting material is added to the alloy melt and an interior of the melting furnace is kept at a given pressure to form a melt of Mg-REM-Ni alloy, and thereafter the alloy melt is cooled and solidified at a given cooling rate to produce a Mg-REM-Ni based hydrogen-absorbing alloy.
    Type: Application
    Filed: February 21, 2005
    Publication date: May 31, 2007
    Applicant: JAPAN METALS AND CHEMICALS CO., LTD.
    Inventors: Masahito Osawa, Katsuyuki Kudo, Akihito Maeda, Seiji Takahashi
  • Publication number: 20060073066
    Abstract: Magnesium-based hydrogen storage alloys comprise metallic magnesium (Mg) and a magnesium-containing intermetallic compound (MgxMy wherein y is 1-x) and contain not less than 60 mass-% of magnesium in total, and have a phase of a primarily crystallized magnesium-containing intermetallic compound in its solidification structure.
    Type: Application
    Filed: November 25, 2005
    Publication date: April 6, 2006
    Applicant: Japan Metals and Chemicals Co., Ltd.
    Inventors: Masahito Osawa, Hidenori Tomioka, Naoyoshi Terashita, Noboru Hayami, Shigeru Tsunokake
  • Patent number: 6692872
    Abstract: There is provided a metal hydride negative electrode having excellent discharge characteristics at the beginning of a charge and discharge cycle, excellent gas absorptivity during charge, and an excellent cycle life, and a method for producing the same without the need of any complicated producing processes. The metal hydride negative electrode (1) is used for a nickel hydride cell, and comprises a substrate (2) and a negative electrode plate (3) which is formed by applying a hydrogen absorbing alloy composition containing a hydrogen absorbing alloy powder, a conductive material, a binder and a dispersing agent on the substrate, wherein the negative electrode plate has a surface portion (4) which has a predetermined water repellent rate and a plurality of convex portions.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: February 17, 2004
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Japan Metals & Chemicals Co., Ltd., Sanoh Kogyo Kabushiki Kaisha
    Inventors: Hiroyuki Suzuki, Kyoichi Ariga, Kenichi Kobayashi, Hiroshi Ogura, Nobuyuki Muromachi, Mieko Nagamori, Hideki Toshima
  • Publication number: 20020197181
    Abstract: Magnesium-based hydrogen storage alloys comprise a metallic magnesium (Mg) and a magnesium-containing intermetallic compound (MgxMy wherein y is 1-x) and contain not less than 60 mass % of magnesium in total, and have a phase of a primarily crystallized magnesium-containing intermetallic compound in its solidification structure.
    Type: Application
    Filed: April 25, 2002
    Publication date: December 26, 2002
    Applicant: JAPAN METALS AND CHEMICALS CO., LTD.
    Inventors: Masahito Osawa, Hidenori Tomioka, Naoyoshi Terashita, Noboru Hayami, Shigeru Tsunokake
  • Patent number: 5968449
    Abstract: An object of the present invention is to provide an iron base Si--Mn alloy or an iron base Si--Mn--Ni alloy which can be easily crushed and can be manufactured in large quantity, and alloy powder thereof.An iron base Si--Mn--Ni alloy having good crushability and alloy powder thereof, comprising:C: 0.40 to 1.20% by weight,Si: 5.0 to 12.0% by weight,Mn: 19.0 to 42.0 % by weight, or Ni: not more than 30% by weight, and the balance being Fe, with the following equations satisfied: Si.gtoreq.11.89-2.92 C-0.077 Mn, Vickers hardness (Hv).gtoreq.550, and area ratio of dendrite structure .ltoreq.50%.An iron base Si--Mn--Ni alloy having good crushability and alloy powder thereof, comprising:C: 0.40 to 1.20% by weight,Si: 5.0 to 12.0% by weight,Mn: 19.0 to 42.0% by weight, or Ni: not more than 30% by weight, and the balance being Fe, with the following equations satisfied: Si.ltoreq.8.3 C+0.14 Mn, and relative permeability (.mu.).ltoreq.1.10.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: October 19, 1999
    Assignees: Nippon Steel Welding Products & Engineering Co., Ltd., Japan Metals & Chemicals Co., Ltd.
    Inventors: Koichi Aoki, Atsuo Onoda, Masao Kamada, Hitoshi Nishimura, Kuniteru Suzuki, Shunji Kikuchi
  • Patent number: 5938910
    Abstract: Electrolytic manganese dioxide having a BET specific surface area of less than 30 m.sup.2 /g and a suspensiveness of less than 50 mg/liter is used for alkaline manganese batteries and manganese batteries to make them excellent both in initial performance and storability. The electrolytic manganese dioxide may be made by a suspension method or a clarification method.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: August 17, 1999
    Assignee: Japan Metals & Chemicals Co., Ltd.
    Inventors: Hisao Takehara, Yoshihiro Nakayama, Ryoichi Shimizugawa, Tsutomu Kishikawa, Takumi Murai, Fumiya Takahashi, Koh Takahashi
  • Patent number: 5916519
    Abstract: To provide a hydrogen storage alloy usable as a negative electrode having a long life and good high-discharge characteristics. Hydrogen storage alloy for cell wherein its general expression is as follows:RNi.sub.a Co.sub.b Al.sub.c Mn.sub.d Fe.sub.e(where R is a mixture of rare earth elements and contains 25.about.75 wt. % La; 3.7.ltoreq.a.ltoreq.4.0, 0.1.ltoreq.b.ltoreq.0.4, 0.20.ltoreq.c.ltoreq.0.4, 0.30.ltoreq.d.ltoreq.0.45, 0.2.ltoreq.e.ltoreq.0.4, 0.5.ltoreq.b+c.ltoreq.0.7, and 5.0.ltoreq.a+b+c+d+e.ltoreq.5.0).
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: June 29, 1999
    Assignee: Japan Metals & Chemicals Co., Ltd.
    Inventors: Nobuyuki Saito, Masashi Takahashi, Takashi Sasai
  • Patent number: 5807532
    Abstract: As a technique of stably producing a crystalline spinel type LiMn.sub.2 O.sub.4 having a large specific surface area by microscopically uniform mixing at atomic level of constitutional elements without causing crystal defects, there is proposed a method wherein water-soluble lithium salt and manganese nitrate (Mn(NO.sub.3).sub.2) are dissolved in water and then non-ion water-soluble high polymer containing no metal ion is added as a cation carried body to the resulting aqueous mixed solution and thereafter water is removed from the aqueous mixed solution under heating, preferably at a temperature of not lower than 100.degree. C. to synthesize crystalline spinel type LiMn.sub.2 O.sub.4.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: September 15, 1998
    Assignee: Japan Metals and Chemicals Co., Ltd.
    Inventors: Koh Takahashi, Takeshi Sotomura, Keiji Satoh