Abstract: An organic material having at least one aromatic conjugated ?-electron system is selected. The purity of the organic material is improved by purification, and a conduction mechanism of the organic material is confirmed by a time-of-flight method, whereby a liquid phase of the organic material is usable as an organic semiconductor. A method that enables the usage of a liquid phase of an organic material as an organic semiconductor is provided. The method involves confirming the electronic conduction of the organic material having at least one aromatic conjugated ?-electron system by evaluation of a charge transport property using a time-of-flight method, and by evaluation of a dilution effect caused by addition of a diluent.
Abstract: A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) of the LED and a surface of the N-face is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
Type:
Grant
Filed:
September 5, 2019
Date of Patent:
April 20, 2021
Assignees:
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, JAPAN SCIENCE AND TECHNOLOGY AGENCY
Inventors:
Tetsuo Fujii, Yan Gao, Evelyn L. Hu, Shuji Nakamura
Abstract: A high-density micro-chamber array has a translucent flat substrate, a hydrophobic layer in which a plurality of micro-chambers are provided, and a lipid bilayer membrane formed in each of the openings of the micro-chambers, wherein an electrode is provided in each of the micro-chambers, and when the side of the substrate on which the hydrophobic layer is provided is directed upward, the micro-chamber array is configured such that with at least one of the following A) and B) being met, light entering the substrate from below is transmitted through the substrate and penetrates into the micro-chambers' interiors, and light entering the substrate from the micro-chambers' interiors is transmitted through the substrate and escapes toward below the substrate. A) The electrode is provided on an inner side surface of each of the micro-chambers. B) The electrode is transparent and provided on a bottom surface of each of the micro-chambers.
Abstract: The present invention is a method for analyzing diffraction data obtained using a crystal structure analysis sample, the sample comprising a single crystal of a porous compound, and a compound for which a structure is to be determined. The method comprising: a step (I) that selects a space group that is identical to a space group of the single crystal of the porous compound, or a space group that has a symmetry lower than that, to be a space group of the crystal structure analysis sample; a step (II) that determines an initial structure of the crystal structure analysis sample using diffraction data with respect to a crystal structure of the single crystal of the porous compound as initial values; and a step (III) that refines the initial structure determined.
Abstract: A wiring film is provided between a cloth and an electronic component, wherein the wiring film has a wiring layer including an extensible film and wirings provided along the extensible film inside or on an outer surface of the extensible film and at least a part of the wirings is exposed from a first surface of the wiring layer that faces the electronic component.
Abstract: Provided are an edge-induced visual illusion generation apparatus, a method, a program, and a recording medium capable of being applied to any image, automatically generating an edge-induced visual illusion without complicated work, and improving contrast using the edge-induced visual illusion. A two-dimensional digital filter, which is a filter with no orientation or an even filter with orientation and is a filter that allows a band of a relatively high frequency to pass or a high pass filter, or is an orientation-selective wavelet frame or an orientation-selective filter bank that are a set of an approximation filter with no orientation and detail filters with orientations, is applied to image data, and a component of a relatively high frequency band or a high frequency component is extracted, and/or coloring is applied to an edge of the extracted band component or the high frequency component, thereby generating an edge-induced visual illusion image.
Abstract: To provide an economical fuel cell electrode catalyst which can be used in place of platinum as a simple substance or a platinum alloy and has easy-to-control catalytic power, a molecular metal complex is used as a fuel cell electrode catalyst which molecular metal complex is a mononuclear or multinuclear coordination compound that has a particular structure, that is not a polymer compound, and that does not have a layered structure.
Abstract: An electrolytic cell capable of simply electrolyzing carbon dioxide into carbon monoxide and oxygen with low activation energy, and an electrolytic device. The carbon dioxide electrolytic cell includes a cathode, an anode, and a solid electrolyte having oxide ion conductivity. The cathode is the following (A) or (B); (A) a metal and a first mayenite-type compound are included therein or (B) a metal and a second mayenite-type compound are included therein, said second mayenite type compound including a mayenite type compound having electron conductivity.
Abstract: Provided is a novel method for producing 4-aminocinnamic acid from 4-nitrophenylalanine. This method comprises: converting 4-nitrophenylalanine into 4-nitrocinnamic acid; and converting 4-nitrocinnamic acid into 4-aminocinnamic acid.
Abstract: The present invention is to provide an electron or hydride ion intake/release material comprising a lanthanoid oxyhydride represented by the formula Ln(HO) (in the formula, Ln represents a lanthanoid element) or an electron or hydride ion intake/release composition comprising at least one kind of lanthanoid oxyhydride; a transition metal-supported material wherein a transition metal is supported by the above electron or hydride ion intake/release material or electron or hydride ion intake/release composition; and a catalyst comprising the transition metal-supported material. The electron or hydride ion intake/release material or electron or hydride ion intake/release composition according to the present invention has a higher ability for intake/release of electron or hydride ion than that of a conventional hydride-containing compound, and can be used effectively as a catalyst such as a catalyst having excellent ammonia synthesis activity by supporting a transition metal thereon.
Abstract: Provided is a compound having higher fluorescence quantum yield and higher optical stability than a conventional FLAP and a polymer compound containing the compound. A: seven or eight-membered ring structure, Y1,Y2,Y3: halogen atom or the like, a1: number of Y1, a2: number of Y2, B: number of Y3, 0?m and n?3: when 1?m?3, Y1 may be substituted with a structure portion defined by m, when 1?n?3, Y2 may be substituted with a structure portion defined by n, and B1, B2: Formulas (2-1) to (2-3). C1, C2, C3: structure containing a cyclic hydrocarbon compound, D1, D2, D3: substructure that inhibits aggregation, E1, E2, E3: polymerizable substructure, Z1: hydrogen atom or the like, c: number of substituent groups Z1, Z2, Z3: hydrogen atom or the like, and may form a ring with C2.
Abstract: To provide a foldable structure to which stiffness is imparted so that non-uniform extension and contraction is inhibited even when each surface is formed of a flexible material, a manufacturing method and a manufacturing device of the foldable structure, and a non-transitory computer-readable computer medium storing a program. A foldable structure including at least two tubular structures in which the two tubular structures include a shared surface array which is continuous shared surfaces shared by each other, and a twisting characteristic in the shared surface array of one tubular structure is in a direction opposite to that of the twisting characteristic in the shared surface array of the other tubular structure.
Type:
Grant
Filed:
February 14, 2018
Date of Patent:
December 29, 2020
Assignees:
The Board of Trustees of the University of Illinois, Japan Science and Technology Agency
Inventors:
Tomohiro Tachi, Yasushi Yamaguchi, Evgueni T. Filipov, Glaucio H. Paulino
Abstract: An object to provide a photonic crystal capable of resonating light at more resonant frequencies within a particular frequency range. A plurality of photonic crystal structure formation bodies each including a plate-like member in which cyclic refractive index distribution is formed are provided so as to be spaced apart from each other in the thickness direction of the plate-like member, and the respective refractive index distributions of the plurality of photonic crystal structure formation bodies are set such that: at least one of the plurality of photonic crystal structure formation bodies resonates with light having at least two frequencies within the frequency range; and the two frequencies are different from resonant frequencies of at least one of the other photonic crystal structure formation bodies.
Abstract: The present invention provides a thermal radiation light source that allows a wider range of material choices than those of conventional techniques, so that light having a desired peak wavelength can easily be obtained. A thermal radiation light source 10 includes a thermo-optical converter made of an optical structure in which a refractive index distribution is formed in a member 11 made of an intrinsic semiconductor so as to resonate with light of a shorter wavelength than a wavelength corresponding to a bandgap of the intrinsic semiconductor. When heat is externally supplied to the thermo-optical converter, light having a spectrum in a band of shorter wavelengths than a cutoff wavelength is produced by interband absorption in the intrinsic semiconductor, and light of a resonant wavelength ?r in the wavelength band, the light causing resonance in the optical structure, is selectively intensified and emitted as thermal radiation light.
Abstract: The problem addressed by the present invention is to provide a block copolymer that can be used in a neutral solvent atmosphere and can produce a solid polymer membrane including nanoparticles. The problem is solved by a block copolymer represented by formula (1) below. wherein in the formula, R1 represents a C1-20 linear, branched, or cyclic alkyl group, C6-20 aryl group, or C7-20 aralkyl group; R2 represents a group having a functional group having an acid dissociation constant pKa of from 0.
Abstract: Provided is a means for preventing the inactivation of a photoresponsive nucleic acid probe by suppressing the formation of a photocrosslink between a modified nucleotide having a structure corresponding to the monomer of Formula (II) or an amino acid analogue of a nucleotide having a structure corresponding to the monomer of Formula (III) and a modified nucleotide having a structure corresponding to the monomer of Formula (I), wherein the modified nucleotide replaces at least one constituent nucleotide which is the photocrosslinkable 1-thyminyl or 1-uracilyl, by substituting at least one constituent nucleotide which is the photocrosslinkable 1-thyminyl or 1-uracilyl with a modified nucleotide having a structure corresponding to the monomer of Formula (I).
Abstract: A thin film transistor 100 according to the invention includes a gate electrode 20, a channel 44, and a gate insulating layer 34 provided between the gate electrode 20 and the channel 44 and made of oxide (possibly containing inevitable impurities; this applies to oxide hereinafter) containing lanthanum and zirconium. The channel 44 is made of channel oxide including first oxide containing indium, zinc, and zirconium (Zr) having an atomic ratio of 0.015 or more and 0.075 or less relative to indium assumed to be 1 in atomic ratio, second oxide containing indium and zirconium (Zr) having an atomic ratio of 0.055 or more and 0.16 or less relative to the indium (In) assumed to be 1 in atomic ratio, or third oxide containing indium and lanthanum having an atomic ratio of 0.055 or more and 0.16 or less relative to the indium (In) assumed to be 1 in atomic ratio.
Type:
Grant
Filed:
August 23, 2019
Date of Patent:
November 24, 2020
Assignee:
JAPAN SCIENCE AND TECHNOLOGY AGENCY
Inventors:
Tatsuya Shimoda, Satoshi Inoue, Tue Trong Phan, Takaaki Miyasako, Jinwang Li
Abstract: According to the present invention, a measurement device includes a light emitting part configured to emit a plurality of spectral lights each including two or more spectra distributed at mutually different frequencies by causing adjacent frequency intervals to be different from each other, a focusing part configured to focus light by causing two or more spectra to overlap in an overlapping region in each of a plurality of different focal point regions of a sample and to be shifted from each other, and a detecting part configured to acquire a signal of fluorescence beats which emits light by interference light beats in each of a plurality of overlapping regions in the sample and includes information of the sample.
Abstract: As a calcium indicator protein having an excellent fluorescent characteristic and calcium reactivity, there is provided DNA in which one of a nucleotide sequence derivative of a calmodulin-binding sequence (ckkap sequence) of calcium/calmodulin-dependent protein kinase kinase and a nucleotide sequence encoding a calcium-binding sequence (CaM sequence) of calmodulin is linked to a 5? end of a nucleotide sequence encoding a fluorescent protein, and the other nucleotide sequence is linked to a 3? end of the nucleotide sequence encoding the fluorescent protein. The calcium indicator protein encoded by this DNA, which based on the derivative of the ckkap sequence as a binding domain for the calcium-bound CaM sequence, exhibits a fluorescent characteristic and calcium reactivity superior to those of conventional calcium indicator proteins.
Abstract: There are provided a new type of crystal laminate of an alkaline earth metal titanate having improved catalytic activity, and a method for producing the same. The crystal laminate is provided having a crystal of the alkaline earth metal titanate as a constitutional unit, wherein the crystal being the constitutional unit is a cubic crystal, a tetragonal crystal or an orthorhombic crystal; the crystal being the constitutional unit has a primary particle diameter of 500 nm or less; and the crystal is layered with an orientation in a {100} plane direction thereof.