Patents Assigned to Jefferson Science Associates
  • Publication number: 20250167505
    Abstract: An apparatus and method for efficient and economic production of multiple free electron lasers includes a serial arrangement of multiple FEL oscillators along a line or a closed ring and reuse of a single electron beam multiple times to drive all FEL oscillators. In a ring configuration, electron bunch recirculation in the ring could also be combined with reuse of the electron beam for FEL production. This would lead to performance enhancement as current of the electron beam would be boosted by a factor of the number of FEL oscillators thereby multiplying the amount of bunch recirculation in the ring and leading to multiple times higher photon flux/average brightness. The invention can also be applied for hybrid photon sources of both FEL and incoherent synchrotron radiation, driven by one electron beam.
    Type: Application
    Filed: November 20, 2023
    Publication date: May 22, 2025
    Applicant: Jefferson Science Associates, LLC
    Inventor: Yuhong ZHANG
  • Patent number: 11920253
    Abstract: A method for vacuum heat treating Nb, such as is used in superconducting radio frequency cavities, to engineer the interstitial oxygen profile with depth into the surface to conveniently optimize the low-temperature rf surface resistance of the material. An example application is heating of 1.3 GHz accelerating structures between 250-400° C. to achieve a very high quality factor of 5×1010 at 2.0 K. With data supplied by secondary ion mass spectrometry measurements, application of oxide decomposition and oxygen diffusion theory was applied to quantify previously unknown parameters crucial in achieving the oxygen alloy concentration profiles required to optimize the rf surface resistance. RF measurements of vacuum heat treated Nb superconducting radio frequency cavities confirmed the minimized surface resistance (higher Q0) previously expected only from 800° C. diffusive alloying with nitrogen.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: March 5, 2024
    Assignee: Jefferson Science Associates, LLC
    Inventors: Ari D. Palczewski, Eric M. Lechner, Charles E. Reece
  • Patent number: 11694423
    Abstract: A gated truncated readout system for position sensitive or imaging detectors that improves resolution over traditional readout systems. The readout system includes two or more amplifiers that receive a multichannel output analog data from the detector. Analog gates control circuitry, included in the readout circuit, receives the signals from the amplifiers, determines a fractional value of the sum-integral of the signals, and enables analog gates operation around an area of interest, disabling all other channels where noise dominates the signal value and thereby improving interpolation accuracy of the signals centroid position and the detector resolution. Filtered signals are transmitted to a centroid interpolation signal processing device for computation of the centroid position. As a result disabling all channels where noise dominates the signal value, the gated truncated readout system provides better accuracy improved detector resolution.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: July 4, 2023
    Assignee: Jefferson Science Associates, LLC
    Inventor: Vladimir Popov
  • Patent number: 10665447
    Abstract: Transition radiation from nanotubes, nanosheets, and nanoparticles and in particular, boron nitride nanomaterials, can be utilized for the generation of light. Wavelengths of light of interest for microchip lithography, including 13.5 nm (91.8 eV) and 6.7 nm (185 eV), can be generated at useful intensities, by transition radiation light sources. Light useful for monitoring relativistic charged particle beam characteristics such as spatial distribution and intensity can be generated.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: May 26, 2020
    Assignees: BNNT, LLC, Jefferson Science Associates, LLC
    Inventors: Kevin C. Jordan, Thomas G. Dushatinski, Michael W. Smith, Jonathan C. Stevens, R. Roy Whitney
  • Publication number: 20170190143
    Abstract: Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nontubes (CNTs), graphites, or their combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mates of BNNTs are uses as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also uses as reinforcing inclusions combining with other polymer matrices to create composite layer like typical reinforcing fibers such as Kevlar®, Spectra®, ceramics and metals. Enhanced wear resistance and prolonged usage time, even under harsh conditions, are achieved by adding boron nitride nanomaterials because both hardness and toughness are increased. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800° C. in air.
    Type: Application
    Filed: June 29, 2015
    Publication date: July 6, 2017
    Applicant: Jefferson Science Associates, LLC
    Inventors: Jin Ho Kang, Cheol Park, Godfrey Sauti, Michael W. Smith, Kevin C. Jordan, Sharon E. Lowther, Robert G. Bryant
  • Patent number: 9125287
    Abstract: A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: September 1, 2015
    Assignee: Jefferson Science Associates, LLC
    Inventor: David R. Douglas
  • Patent number: 9123611
    Abstract: A method for designing a completely passive bias compensation circuit to stabilize the gain of multiple pixel avalanche photo detector devices. The method includes determining circuitry design and component values to achieve a desired precision of gain stability. The method can be used with any temperature sensitive device with a nominally linear coefficient of voltage dependent parameter that must be stabilized. The circuitry design includes a negative temperature coefficient resistor in thermal contact with the photomultiplier device to provide a varying resistance and a second fixed resistor to form a voltage divider that can be chosen to set the desired slope and intercept for the characteristic with a specific voltage source value. The addition of a third resistor to the divider network provides a solution set for a set of SiPM devices that requires only a single stabilized voltage source value.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: September 1, 2015
    Assignee: Jefferson Science Associates, LLC
    Inventors: John E. McKisson, Fernando Barbosa
  • Patent number: 9067385
    Abstract: Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar®, Spectra®, ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800° C. in air.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: June 30, 2015
    Assignees: Jefferson Science Associates, LLC, The United States of America as represented by the Administrator of NASA
    Inventors: Jin Ho Kang, Cheol Park, Godfrey Sauti, Michael W. Smith, Kevin C. Jordan, Sharon E. Lowther, Robert George Bryant
  • Patent number: 9023765
    Abstract: An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: May 5, 2015
    Assignee: Jefferson Science Associates, LLC
    Inventors: Robert Rimmer, Pedro E. Frigola, Alex Y. Murokh
  • Patent number: 8986513
    Abstract: A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: March 24, 2015
    Assignees: Jefferson Science Associates, LLC, The United States of America as Represented by the Administration of NASA
    Inventors: R. Roy Whitney, Kevin Jordan, Michael W. Smith
  • Patent number: 8903464
    Abstract: An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.
    Type: Grant
    Filed: October 23, 2010
    Date of Patent: December 2, 2014
    Assignee: Jefferson Science Associates, LLC
    Inventors: Ganapati Rao Myneni, John P. Wallace
  • Patent number: 8863568
    Abstract: A device and method for characterizing quality of a conducting surface. The device including a gaseous ionizing chamber having centrally located inside the chamber a conducting sample to be tested to which a negative potential is applied, a plurality of anode or “sense” wires spaced regularly about the central test wire, a plurality of “field wires” at a negative potential are spaced regularly around the sense, and a plurality of “guard wires” at a positive potential are spaced regularly around the field wires in the chamber. The method utilizing the device to measure emission currents from the conductor.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: October 21, 2014
    Assignee: Jefferson Science Associates, LLC
    Inventors: Mac Mestayer, Steve Christo, Mark Taylor
  • Patent number: 8842703
    Abstract: An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: September 23, 2014
    Assignee: Jefferson Science Associates, LLC
    Inventors: Shukui Zhang, Guy Wilson
  • Patent number: 8812068
    Abstract: A method of forming a delta niobium nitride ?-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: August 19, 2014
    Assignee: Jefferson Science Associates, LLC.
    Inventors: Michael J. Kelley, John Michael Klopf, Senthilaraja Singaravelu
  • Patent number: 8753578
    Abstract: An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: June 17, 2014
    Assignees: Jefferson Science Associates, LLC, The United States of America as represented by the Administrator of NASA
    Inventors: Michael W. Smith, Kevin Jordan
  • Patent number: 8679300
    Abstract: An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 25, 2014
    Assignees: Jefferson Science Associates, LLC, The United States of America as represented by the Administrator of Nasa
    Inventors: Michael W. Smith, Kevin C. Jordan
  • Patent number: 8673120
    Abstract: A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 18, 2014
    Assignees: Jefferson Science Associates, LLC, The United States of America, as Represented by the Administrator of NASA
    Inventors: R. Roy Whitney, Kevin Jordan, Michael W. Smith
  • Patent number: 8664630
    Abstract: A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: March 4, 2014
    Assignee: Jefferson Science Associates, LLC
    Inventors: Bert Clayton Metzger, Paul Daniel Brindza
  • Patent number: 8648314
    Abstract: A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 11, 2014
    Assignee: Jefferson Science Associates, LLC
    Inventors: Vladimir Popov, Pavel Degtiarenko, Igor V. Musatov
  • Patent number: 8581526
    Abstract: A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.
    Type: Grant
    Filed: August 28, 2010
    Date of Patent: November 12, 2013
    Assignee: Jefferson Science Associates, LLC
    Inventor: Alicia Hofler