Abstract: Method for producing nano sized ferrite particles from a metallurgical slag, the method including the steps of: a) providing a ladle with a molten slag including CaO, SiO2, FeO, and at least one of MnO, Cr2O3, V2O3. b) oxidizing the slag at a temperature in the interval of 1573K-1773K (1300-1500° C.) for 10-90 minutes, c) removing at least a portion of the slag from the ladle d) cooling the removed slag portion to a temperature below 373K (100° C.), e) extracting nano sized manganese ferrite and/or chromium ferrite and/or vanadium ferrite particles from the cooled portion.
Type:
Grant
Filed:
September 7, 2011
Date of Patent:
August 2, 2016
Assignee:
Jernkontoret
Inventors:
Anna Nakano, Seshadri Seetharaman, Volodymyr Shatokha
Abstract: Method for producing nano sized ferrite particles from a metallurgical slag, the method including the steps of: a) providing a ladle with a molten slag including CaO, SiO2, FeO, and at least one of MnO, Cr2O3, V2O3. b) oxidizing the slag at a temperature in the interval of 1573K-1773K (1300-1500° C.) for 10-90 minutes, c) removing at least a portion of the slag from the ladle d) cooling the removed slag portion to a temperature below 373K (100° C.), e) extracting nano sized manganese ferrite and/or chromium ferrite and/or vanadium ferrite particles from the cooled portion.
Type:
Application
Filed:
September 7, 2011
Publication date:
October 29, 2015
Applicant:
JERNKONTORET
Inventors:
Anna NAKANO, Seshadri SEETHARAMAN, Volodymyr SHATOKHA
Abstract: A process for recovering at least one metal from a metal containing resource, in particular containing at least one metal oxide. The process including the step: providing a crucible containing a chloride salt melt, at least one cathode and an anode connected to the salt melt, heating means for heating the salt melt, and an aluminum melt present at the bottom of the crucible, said aluminum melt forming a part of the anode.
Abstract: The invention concerns a process for recovering at least one rare earth metal (REM) from the group of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. A chloride salt melt is provided and aluminium chloride is used to chlorinate a REMcontaining resource. The REM can be recovered by electrolysis, vaporisation or hydrometallurgical methods.
Abstract: Lead and/or Indium cam be recovered from cullet containing indium and/or lead, such as cullet from CRTs and flat panel displays. A chloride salt melt including AlCl3 is used to dissolve the cullet. The melt may be electrolyzed and the lead and/or indium and other metals may be selectively electro-deposited from the salt melt. The two steps may be combined in a continuous process. The salts in the salt melt are not consumed but can be recycled, with exception of the flux due to formation of chlorine gas and alumina. It is also possible to recover lead and/or indium and other metals from the salt melt by vaporizing the respective chlorides and condensing them, or by leaching the salt phase in water and extracting the metals as hydroxides by hydrometallurgy methods.
Abstract: A process for recovering at least one metal from a metal containing resource, in particular containing at least one metal oxide. The process including the step: providing a crucible containing a chloride salt melt, at least one cathode and an anode connected to the salt melt, heating means for heating the salt melt, and an aluminum melt present at the bottom of the crucible, said aluminum melt forming a part of the anode.
Abstract: A method for preventing segregations in continuous casting by deforming the continuous strand plastically during the solidification in such a way that the cross sectional area of the strand is physically reduced corresponding substantially to the solidification shrinkage of the metal. The method avoids upward or downward transport of melt in the solidifying strand. The reduction in most cases will be 2-6% and can be accomplished with apparatus having a number of pair of strand reducing rolls or jets along the strand, to reduce it a number of times, each time less than the total desired reduction. The reduction of the strand from casting to the final strand follows the solidification shrinkage.