Abstract: A preparation method for improving light efficiency and stability of light storing ceramics is provided. Calcium ethanol solution is added into titanium precursor solution firstly and oleic acid dispersant is added, pure water and the light storing powder are subsequently added to obtain a light-storing powder-calcium titanate gel, and dried, crushed and sieved to obtain xerogel powder. Glass matrix material, sieved xerogel powder and another dispersant are placed into a granulator, and directly mechanically stirred and granulated after adding pure water. A plasticizer is added after stirring 4˜8 h, and continuously stirred for 1˜3 h to obtain a mixture, pressing, drying and firing. Calcium titanate is manually introduced to protect the light-storing powder from hydrolysis or high-temperature oxidation. It can also change the propagation path of fluorescence inside ceramics, improve light absorption and fluorescence output efficiency and is conducive to ceramic molding.
Type:
Grant
Filed:
December 1, 2021
Date of Patent:
March 4, 2025
Assignees:
Jiangsu Normal University, Xuzhou All-To Photoelectric Technology Co., LTD
Abstract: The present invention discloses a method for optimizing sensor network node location in a geological CO2 storage area. In the method, by analyzing data in a monitoring area, such as geological data, geographical data, and meteorological data, analyzing influence factors of a CO2 leakage event and determining a sensitivity partition, designing different coverage control schemes of monitoring sensor network nodes, or intensively or sparsely arranging sensor monitoring nodes, a coverage network is described and optimally expressed on the basis of Delaunay triangulation. In the method for optimizing sensor network node location in a geological carbon dioxide storage area, the arrangement density of wireless sensor network nodes can be dynamically adjusted according to geological and geographical features of a detection area, and the arrangement optimization of a dynamic monitoring sensor network for coal seam carbon dioxide injection area leakage can be realized.
Type:
Grant
Filed:
December 27, 2017
Date of Patent:
October 20, 2020
Assignees:
China University of Mining and Technology, Xuzhou Relimap Informatfon Technology Co., Ltd., Jiangsu Normal University, Southeast University
Inventors:
Hui Yang, Li Yang, Gefei Feng, Xiaodong Xu, Yong Qin, Yaqin Sun, Hui Ci, Lifang Xue
Abstract: An automatic handle assembly system for a paint brush, including a feeding device, a conveying device, a handle pushing device, a pneumatic system, and a control system. The feeding device is used for transporting a glue-filled paint brush head to an entrance of the conveying device. The conveying device is used for realizing transportation, pressing and precise positioning of the paint brush head. The handle pushing device is used for pushing a paint brush handle to precisely insert into the paint brush head. The feeding device, the conveying device, and the handle pushing device are all connected to the pneumatic system and the control system.
Abstract: An automatic handle assembly system for a paint brush, including a feeding device, a conveying device, a handle pushing device, a pneumatic system, and a control system. The feeding device is used for transporting a glue-filled paint brush head to an entrance of the conveying device. The conveying device is used for realizing transportation, pressing and precise positioning of the paint brush head. The handle pushing device is used for pushing a paint brush handle to precisely insert into the paint brush head. The feeding device, the conveying device, and the handle pushing device are all connected to the pneumatic system and the control system.