Abstract: A system and method for controlling a model train system and for defining a finite state machine for implementing control of the system. A computer (32) that is running a graphic user operating system is coupled through its serial port to a master control unit (MCU) (48). The MCU is coupled to slave control units (SCUs) (50, 52) and to a hand control unit (HCU) (152) through a token ring network (69) over which the computer transmits commands to energize selected track sections and to control the speed of locomotives (88, 90) running thereon. The MCU and SCUs are coupled to the sections of tracks and to electromagnetic switches (42, 44, 46) that determine the route of the trains over the sections of track. Furthermore, detector circuits (126) monitor a detector pulse to sense the presence of a locomotive or train on a particular section of track, producing an indicative output signal that is provided to the computer.
Abstract: A system and method for controlling a model train system and for defining a finite state machine for implementing control of the system. A computer (32) that is running a graphic user operating system is coupled through its serial port to a master control unit (MCU) (48). The MCU is coupled to slave control units (SCUs) (50, 52) and to a hand control unit (HCU)(152) through a token ring network (69) over which the computer transmits commands to energize selected track sections and to control the speed of locomotives (88, 90) running thereon. The MCU and SCUs are coupled to the sections of tracks and to electromagnetic switches (42, 44, 46) that determine the route of the trains over the sections of track. Furthermore, detector circuits (126) monitor a detector pulse to sense the presence of a locomotive or train on a particular section of track, producing an indicative output signal that is provided to the computer.