Abstract: A system for extracting and processing adipose tissue to generate a therapeutically effective amount of adipose-derived stem cells, comprising an adipose tissue extraction device and a modified centrifuge tube comprising a plurality of lipoaspirate inlet fittings, a plurality of processing fluid inlet fittings, and a plurality of pellet extraction tubes. The adipose tissue extraction device is used to extract a quantity of adipose tissue from a human being, the lipoaspirate is moved into the first modified centrifuge tube via a sterile transfer, a plurality of processing steps are performed to clean and dissociate the lipoaspirate, and a pellet containing an enhanced fraction of stem cells is obtained by centrifuging the modified centrifugal tube. The pellet is resuspended in a fluid and administered to a human patient for a therapeutic or cosmetic purpose.
Abstract: Described herein are orthopedic applications of mesenchymal stem cell encapsulated and delivered for treatment of cartilage damage in joints. A therapeutic composition is prepared comprising a purified fraction of adipose-derived mesenchymal stem cells encapsulated in microbeads of a three-dimensional biocompatible gel matrix. The hydrogel microbeads encapsulating stem cells maintain the viability and location of the stem cells for an extended period as compared to stem cells in suspension. The microbeads are implanted adjacent a target orthopedic treatment site where the microbeads allow the release of cellular factors from the encapsulated stem cells to surrounding orthopedic tissues to achieve desired therapeutic results such as healing of cartilage damage in joints.
Abstract: A therapeutic composition comprising a purified fraction of adipose-derived mesenchymal stem cells encapsulated in a three-dimensional biocompatible gel matrix, and methods, and systems for preparing and using encapsulated adipose-derived mesenchymal stem cells. Hydrogel microbeads encapsulating stem cells maintain the viability and location of the stem cells for an extended period as compared to stem cells in suspension. The gel matrix allows the release of cellular factors from the encapsulated stem cells to surrounding tissues to achieve desired therapeutic results.