Patents Assigned to JOINTECHLABS, INC.
-
Patent number: 12239669Abstract: A device that allows for either fat graft preparation or cell fraction harvest is disclosed. The device includes a first centrifuge tube configured to receive and process a biological substance, the first centrifuge tube comprising an upper cylindrical portion and a lower conical portion, a sterile tissue inlet fitting, at least one sterile processing fluid inlet fitting, a sterile suction fitting, and at least one sterile extraction port connected to a first extraction tube. The first centrifuge tube further includes an internal space including a screen being positioned therein, the screen being configured to divide the internal space in half, and a filter positioned therein, the filter being positioned below the screen in the lower conical portion of the first centrifuge tube. The device may further include a second centrifuge tube configured to receive and further process the biological substance from the first centrifuge tube.Type: GrantFiled: September 26, 2023Date of Patent: March 4, 2025Assignee: Jointechlabs, Inc.Inventors: Nathan Katz, Nishit Pancholi
-
Publication number: 20240016851Abstract: A device that allows for either fat graft preparation or cell fraction harvest is disclosed. The device includes a first centrifuge tube configured to receive and process a biological substance, the first centrifuge tube comprising an upper cylindrical portion and a lower conical portion, a sterile tissue inlet fitting, at least one sterile processing fluid inlet fitting, a sterile suction fitting, and at least one sterile extraction port connected to a first extraction tube. The first centrifuge tube further includes an internal space including a screen being positioned therein, the screen being configured to divide the internal space in half, and a filter positioned therein, the filter being positioned below the screen in the lower conical portion of the first centrifuge tube. The device may further include a second centrifuge tube configured to receive and further process the biological substance from the first centrifuge tube.Type: ApplicationFiled: September 26, 2023Publication date: January 18, 2024Applicant: Jointechlabs, Inc.Inventors: Nathan Katz, Nishit Pancholi
-
Patent number: 11766459Abstract: A device that allows for either fat graft preparation or cell fraction harvest is disclosed. The device includes a first centrifuge tube configured to receive and process a biological substance, the first centrifuge tube comprising an upper cylindrical portion and a lower conical portion, a sterile tissue inlet fitting, at least one sterile processing fluid inlet fitting, a sterile suction fitting, and at least one sterile extraction port connected to a first extraction tube. The first centrifuge tube further includes an internal space including a screen being positioned therein, the screen being configured to divide the internal space in half, and a filter positioned therein, the filter being positioned below the screen in the lower conical portion of the first centrifuge tube. The device may further include a second centrifuge tube configured to receive and further process the biological substance from the first centrifuge tube.Type: GrantFiled: April 2, 2019Date of Patent: September 26, 2023Assignee: JoinTechLabs, Inc.Inventors: Nathan Katz, Nishit Pancholi
-
Patent number: 10967110Abstract: A device that allows for either fat graft preparation or cell fraction harvest is disclosed. The device includes a first centrifuge tube configured to receive and process a biological substance, the first centrifuge tube comprising an upper cylindrical portion and a lower conical portion, a sterile tissue inlet fitting, at least one sterile processing fluid inlet fitting, a sterile suction fitting, and at least one sterile extraction port connected to a first extraction tube. The first centrifuge tube further includes an internal space including a screen being positioned therein, the screen being configured to divide the internal space in half, and a filter positioned therein, the filter being positioned below the screen in the lower conical portion of the first centrifuge tube. The device may further include a second centrifuge tube configured to receive and further process the biological substance from the first centrifuge tube.Type: GrantFiled: April 2, 2018Date of Patent: April 6, 2021Assignee: Jointechlabs, Inc.Inventor: Nathan Katz
-
Patent number: 10745666Abstract: A therapeutic composition comprising a purified fraction of adipose-derived mesenchymal stem cells encapsulated in a three-dimensional biocompatible gel matrix, and methods, and systems for preparing and using encapsulated adipose-derived mesenchymal stem cells. Hydrogel microbeads encapsulating stem cells maintain the viability and location of the stem cells for an extended period as compared to stem cells in suspension. The gel matrix allows the release of cellular factors from the encapsulated stem cells to surrounding tissues to achieve desired therapeutic results.Type: GrantFiled: April 6, 2018Date of Patent: August 18, 2020Assignee: JointechLabs, Inc.Inventors: Nathan Katz, Felix Pustilnik
-
Patent number: 9938501Abstract: A therapeutic composition comprising a purified fraction of adipose-derived mesenchymal stem cells encapsulated in a three-dimensional biocompatible gel matrix, and methods, and systems for preparing and using encapsulated adipose-derived mesenchymal stem cells. Hydrogel microbeads encapsulating stem cells maintain the viability and location of the stem cells for an extended period as compared to stem cells in suspension. The gel matrix allows the release of cellular factors from the encapsulated stem cells to surrounding tissues to achieve desired therapeutic results.Type: GrantFiled: July 28, 2011Date of Patent: April 10, 2018Assignee: JointechLabs, Inc.Inventors: Nathan Katz, Felix Pustilnik
-
Patent number: 9931445Abstract: A system for extracting and processing adipose tissue to generate a therapeutically effective amount of adipose-derived stem cells, comprising an adipose tissue extraction device and a modified centrifuge tube comprising a plurality of lipoaspirate inlet fittings, a plurality of processing fluid inlet fittings, and a plurality of pellet extraction tubes. The adipose tissue extraction device is used to extract a quantity of adipose tissue from a human being, the lipoaspirate is moved into the first modified centrifuge tube via a sterile transfer, a plurality of processing steps are performed to clean and dissociate the lipoaspirate, and a pellet containing an enhanced fraction of stem cells is obtained by centrifuging the modified centrifugal tube. The pellet is resuspended in a fluid and administered to a human patient for a therapeutic or cosmetic purpose.Type: GrantFiled: July 9, 2012Date of Patent: April 3, 2018Assignee: JOINTECHLABS, INC.Inventors: Felix Pustilnik, Nathan Katz
-
Publication number: 20120087983Abstract: Described herein are orthopedic applications of mesenchymal stem cell encapsulated and delivered for treatment of cartilage damage in joints. A therapeutic composition is prepared comprising a purified fraction of adipose-derived mesenchymal stem cells encapsulated in microbeads of a three-dimensional biocompatible gel matrix. The hydrogel microbeads encapsulating stem cells maintain the viability and location of the stem cells for an extended period as compared to stem cells in suspension. The microbeads are implanted adjacent a target orthopedic treatment site where the microbeads allow the release of cellular factors from the encapsulated stem cells to surrounding orthopedic tissues to achieve desired therapeutic results such as healing of cartilage damage in joints.Type: ApplicationFiled: September 26, 2011Publication date: April 12, 2012Applicant: JOINTECHLABS, INC.Inventors: Nathan Katz, Felix Pustilnik
-
Publication number: 20120027860Abstract: A therapeutic composition comprising a purified fraction of adipose-derived mesenchymal stem cells encapsulated in a three-dimensional biocompatible gel matrix, and methods, and systems for preparing and using encapsulated adipose-derived mesenchymal stem cells. Hydrogel microbeads encapsulating stem cells maintain the viability and location of the stem cells for an extended period as compared to stem cells in suspension. The gel matrix allows the release of cellular factors from the encapsulated stem cells to surrounding tissues to achieve desired therapeutic results.Type: ApplicationFiled: July 28, 2011Publication date: February 2, 2012Applicant: JOINTECHLABS, INC.Inventors: Nathan Katz, Felix Pustilnik