Abstract: A system may identify a group of first links in a document, where the first links correspond to a group of objects within the document and are associated with a same identifier. The system may replace the first links in the document with second links that point to a number of different identifiers, and forward the document with the second links to a client.
Abstract: In general, techniques are described for mapping WAN conditions to appropriate back-pressure mechanisms at the WAN edges to improve the performance of delay and/or loss-sensitive applications. In one example, a system includes a wide area network having a provider edge (PE) router to establish a Fibre Channel over Ethernet (FCoE) pseudowire over the wide area network. A Lossless Ethernet network attaches, by an attachment circuit, to the FCoE pseudowire at the PE router. A Fibre Channel Fabric connects to the Lossless Ethernet network and to a storage device that provides data for transmission over the wide area network by the FCoE pseudowire. The PE router detects a defect in the FCoE pseudowire and, in response to detecting the defect in FCoE pseudowire, injects an FCoE flow control extension into the Lossless Ethernet network by the attachment circuit.
Abstract: A cooling system includes a heat sink to absorb heat that is generated by a component of a device, where the heat sink includes a base to dissipate the heat, and a group of fins via which the heat, that is dissipated by the base, is transferred; and an inverted heat sink to receive the heat via the fins. The inverted heat sink includes another base to prevent a portion of the heat, transferred into an environment where another component is located, from causing a temperature, of the environment, to increase above a threshold; a heat pipe to transfer another portion of the heat, not transferred into the environment, to a portion of the other base; and another group of fins to receive the other portion of the heat via the portion of the other base. The inverted heat sink is also to transfer the other portion of the heat to another environment to prevent a temperature, of the component, from increasing above another threshold.
Abstract: A system determines bandwidth use by queues in a network device. To do this, the system determines an instantaneous amount of bandwidth used by each of the queues and an average amount of bandwidth used by each of the queues. The system then identifies bandwidth use by each of the queues based on the instantaneous bandwidth used and the average bandwidth used by each of the queues.
Abstract: A network device includes a memory, a routing engine and a forwarding engine. The memory stores a forwarding table and the routing engine constructs a first composite next hop that includes multiple next hops, where each of the multiple next hops represents an action to be taken on a data unit as it transits the network device or represents another composite next hop, and where the first composite next hop specifies a function to be performed on the plurality of next hops. The routing engine further stores the composite next hop in an entry of the forwarding table. The forwarding engine retrieves the composite next hop from the forwarding table, and forwards a data unit towards one or more network destinations based on the composite next hop.
Abstract: A method may include receiving a request for a lawful intercept (LI) session, where the LI session is associated with a particular priority of a set of priority levels, and determining whether a maximum quantity of LI sessions has been initiated by a network device. The method may further include initiating a new LI session based on the request, when the maximum quantity of LI sessions has not been initiated; determining whether at least one LI session exists that is associated with a lower priority than the particular priority, when the maximum quantity of LI sessions has been initiated; and terminating a particular LI session associated with a lowest priority and initiating a new LI session based on the received request, when the at least one LI session associated with the lower priority exists.
Abstract: A method for managing access to network resources by a first network device may include establishing a communication session with the first network device. The method may also include receiving information from the first network device during the communication session, the information indicating that the first network device is not in compliance with at least one security-related rule. The method may further include determining whether to modify access by the first network device to at least one of the network resources based on the received information.
Abstract: A network device establishes a logical channel with each server device of multiple server devices, where each logical channel is not shared with another server device of the multiple server devices. The network device also determines a network loopback Internet protocol (IP) address for each server device of the multiple server devices, and associates each network loopback IP address with a corresponding logical channel. The network device further receives a packet destined for a particular server device, and provides the packet to the particular server device via the logical channel associated with the particular server device.
Abstract: In one embodiment, a method includes sending a configuration signal to a virtual network switch module within a control plane of a communications network. The configuration signal is configured to define a first network rule at the virtual network switch module. The method also includes configuring a packet forwarding module such that the packet forwarding module implements a second network rule, and receiving status information from the virtual network switch module and status information from the packet forwarding module. The status information is received via the control plane.
Abstract: A method and an apparatus for rapidly resuming, at times of failures, network traffic in a connection-oriented network by using an alternative route pre-computed and stored locally in nodes along an initial route without requiring signaling of upstream nodes or a master server.
Abstract: A redundant power supply may obtain a rule for increasing mean time between failures (MTBF) for a first internal power supply and a second internal power supply connected to an electronic device, apply the rule to the first and second power supplies, activate the second internal power supply based on the rule to permit the second internal power supply to provide power to the electronic device, and deactivate the first internal power supply based on the rule.
Abstract: In one embodiment, a processor-readable medium can store code representing instructions that when executed by a processor cause the processor to receive a value representing a congestion level of a receive queue and a value representing a state of a transmit queue. At least a portion of the transmit queue can be defined by a plurality of packets addressed to the receive queue. A rate value for the transmit queue can be defined based on the value representing the congestion level of the receive queue and the value representing the state of the transmit queue. The processor-readable medium can store code representing instructions that when executed by the processor cause the processor to define a suspension time value for the transmit queue based on the value representing the congestion level of the receive queue and the value representing the state of the transmit queue.
Abstract: Network devices provide seamless offloading of data communications from a service provider's cellular network to an alternate access network outside of the service provider's cellular network. After a cellular mobile device has initially been authenticated by devices in the cellular network to communicate with a packet data network via the cellular network, the cellular mobile device is configured to leverage its prior authentication on the cellular network and automatically obtain credentials for use in logging onto the alternate access network, without requiring any action by a user of the cellular mobile device. After the cellular mobile device is logged on to the alternate access network, the cellular mobile device sends wireless data communications to the packet data network via the alternate access network instead of the cellular network.
Type:
Grant
Filed:
September 28, 2011
Date of Patent:
November 26, 2013
Assignee:
Juniper Networks, Inc.
Inventors:
Hartmut Schroeder, Hendrikus G. P. Bosch, Prem Ananthakrishnan
Abstract: A method and apparatus for provisioning virtual upstream channels within one physical upstream channel. Each virtual upstream channel is assigned to a group of cable modems that share certain operational parameters. New virtual upstream channels can be provisioned as needed and existing virtual upstream channels can be deleted, as needed.
Abstract: An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract: In some embodiments, a non-transitory processor-readable medium includes code to cause a processor to receive at a tunnel server, a data unit addressed to a communication device, and define, a first instance of the data unit and a second instance of the data unit. The first instance of the data unit is sent to the communication device via a first tunnel defined between at least the tunnel server and a first base station associated with a first network. The second instance of the data unit is sent to the communication device via a second tunnel defined between at least the tunnel server and a second base station associated with a second network. The second instance of the data unit is dropped by the communication device when the first instance of the data unit is received before the second instance of the data unit.
Abstract: In general, the invention is directed to techniques for improving memory utilization in a priority queuing system of a network device. More specifically, a priority queue memory management system is described in which memory pages are assigned to the various priority queues in order to implement an efficient first in, first out (FIFO) functionality. The dynamic memory techniques described herein allow the multiple priority queues to share a common memory space. As a result, each priority queue does not require a pre-allocated amount of memory that matches the aggregate size of the packets that must be buffered by the queue.
Type:
Grant
Filed:
October 25, 2010
Date of Patent:
November 19, 2013
Assignee:
Juniper Networks, Inc.
Inventors:
Xianzhi Li, Hongsheng Ping, Qingming Ma
Abstract: The techniques of this disclosure provide local protection for network traffic in multipoint label switched paths (LSPs) due to link or node failure using loop-free alternate (LFA) next hops. The techniques include establishing a vanilla or point-to-point (P2P) LSP with LFA next hops between routers of a multipoint LSP for use in the event of link or node failure in the multipoint LSP. Upon a failure, the multicast traffic is tunneled between the routers using the P2P LSP with LFA to an alternate next hop with an associated label stack. The techniques of this disclosure define the label stack as including a P2P LSP label as well as a multipoint LSP label. In this way, the P2P LSP with LFA may be used for fast reroute (FRR) of traffic in the multipoint LSP until a convergence process completes for a new multipoint branch of the multipoint LSP.
Abstract: An apparatus and method are described for compensating for frequency and phase variations of electronic components by processing packet delay values. In one embodiment, a packet delay determination module determines packet delay values based on time values associated with a first and a second electronic component. A packet delay selection module selects a subset of the packet delay values based on the maximum frequency drift of the first electronic component. A statistical parameter determination module evaluates a first and a second parameter based on portions of the subset of packet delay values. A validation module validates the parameters when each portion the subset of packet delay values includes a minimum of at least two packet delay values. An adjustment module compensates for at least one of a frequency variation and a phase variation of the first electronic component based on the parameters if the parameters are both validated.
Type:
Application
Filed:
July 17, 2013
Publication date:
November 14, 2013
Applicant:
Juniper Networks, Inc.
Inventors:
Charles F. Barry, Meenakshi S. Subramanian, Feng Frank Pan, Tian (Alan) Shen, Philip Kruzinski, Guochun (George) Zhao, DeviPrasad Natesan, David R. Jorgensen