Patents Assigned to Jushi Group Co. Ltd.
  • Patent number: 11919802
    Abstract: An electronic-grade glass fiber composition includes the following components with corresponding amounts by weight percentages 51.0-57.5% SiO2, 11.0-17.0% Al2O3, >4.5% and ?6.4% B2O3, 19.5-24.8% CaO, 0.1-1.9% MgO, 0.05-1.2% R2O=Na2O+K2O+Li2O, 0.05-0.8% Fe2O3, 0.01-1.0% TiO2, and 0.01-1.0% F2. A weight percentage ratio C1=SiO2/B2O3 is 8.1-12.7, a weight percentage ratio C2=B2O3/(R2O+MgO) is 1.7-6.3, and a total weight percentage of the above components is greater than or equal to 99%.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: March 5, 2024
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Guorong Cao, Wenzhong Xing, Lin Zhang, Zhonghua Yao, Hongya Zhou
  • Patent number: 11884575
    Abstract: A composition for producing a glass fiber, including the following components with corresponding percentage amounts by weight: SiO2: 57.4-60.9%; Al2O3: greater than 17% and less than or equal to 19.8%; MgO: greater than 9% and less than or equal to 12.8%; CaO: 6.4-11.8%; SrO: 0.1-1.5%; Na2O+K2O: 0.1-1.1%; Fe2O3: 0.05-1%; TiO2: lower than 0.8%; and SiO2+Al2O3: lower than or equal to 79.4%. The total weight percentage of the above components in the composition is greater than 99%. The weight percentage ratio of Al2O3+MgO to SiO2 is between 0.43 and 0.56, and the weight percentage ratio of CaO+MgO to SiO2+Al2O3 is greater than 0.205. The composition can significantly increase the glass modulus, effectively reduce the glass crystallization rate, secure a desirable temperature range (?T) for fiber formation and enhance the refinement of molten glass, thus making it particularly suitable for high performance glass fiber production with refractory-lined furnaces.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: January 30, 2024
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Guorong Cao, Lin Zhang, Wenzhong Xing, Xiucheng Hong, Zhonghua Yao
  • Patent number: 11643360
    Abstract: An electronic-grade glass fiber composition includes the following components with corresponding amounts by weight percentages: 54.2-60% SiO2, 11-17.5% Al2O3, 0.7-4.5% B2O3, 18-23.8% CaO, 1-5.5% MgO, less than or equal to 24.8% CaO+MgO, less than 1% Na2O+K2O+Li2O, 0.05-0.8% TiO2, 0.05-0.7% Fe2O3, and 0.01-1.2% F2. The weight percentage ratio C1=SiO2/(RO+R2O) is greater than or equal to 2.20, and the total weight percentage of the above components is greater than or equal to 98.5%.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: May 9, 2023
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Wenzhong Xing, Guorong Cao, Lin Zhang, Xiucheng Hong, Shuangbao Zuo, Zhonghua Yao
  • Patent number: 11339085
    Abstract: A composition for producing a glass fiber, including the following components with corresponding percentage amounts by weight: SiO2: 57.4-60.9%; Al2O3: greater than 17% and less than or equal to 19.8%; MgO: greater than 9% and less than or equal to 12.8%; CaO: 6.4-11.8%; SrO: 0-1.6%; Na2O+K2O: 0.1-1.1%; Fe2O3: 0.05-1%; TiO2: lower than 0.8%; and SiO2+Al2O3: lower than or equal to 79.4%. The total weight percentage of the above components in the composition is greater than 99%. The weight percentage ratio of Al2O3+MgO to SiO2 is between 0.43 and 0.56, and the weight percentage ratio of CaO+MgO to SiO2+Al2O3 is greater than 0.205. The composition can significantly increase the glass modulus, effectively reduce the glass crystallization rate, secure a desirable temperature range (?T) for fiber formation and enhance the refinement of molten glass, thus making it particularly suitable for high performance glass fiber production with refractory-lined furnaces.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: May 24, 2022
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Guorong Cao, Lin Zhang, Wenzhong Xing, Xiucheng Hong, Zhonghua Yao
  • Patent number: 11293693
    Abstract: A modular oven structure includes a frame, a circulation fan at a top of the frame, a tunnel air inlet chamber, a tunnel air return chamber, a tunnel drying chamber between the tunnel air inlet and tunnel air return chambers, a tunnel air inlet plate including air apertures and between the tunnel air inlet and tunnel drying chambers, a tunnel air return plate including air apertures and between the tunnel air return and tunnel drying chambers, a fan air inlet chamber above the tunnel drying chamber, a fan air outlet chamber between the fan air inlet chamber and the top of the frame, a heater, a temperature control system, and a control device. The temperature control system includes one or more temperature sensors in the tunnel air inlet, tunnel air return, and/or tunnel drying chamber.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: April 5, 2022
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Jiansong Shao, Haijian Peng
  • Patent number: 11097972
    Abstract: An arrangement structure for bubbling apparatuses of a furnace, comprising bubbling apparatuses disposed in a melting pool (11) of a furnace. Each bubbling apparatus comprises a bubbling tank (8) and a bubbling tube (9). The bubbling tank (8) is provided at the bottom of the melting pool (11) and disposed in recessed fashion. The bubbling tube (9) is mounted in the bubbling tank (8). The structure can efficiently enhance the physical effect of a bubbling gas on molten glass and improve the quality and production efficiency of the molten glass.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: August 24, 2021
    Assignee: JUSHI GROUP CO., LTD.
    Inventor: Yonggen Qian
  • Patent number: 11078109
    Abstract: A composition for producing a glass fiber, including the following components with corresponding percentage amounts by weight: 54.2-64% SiO2, 11-18% Al2O3, 20-25.5% CaO, 0.3-3.9% MgO, 0.1-2% of Na2O+K2O, 0.1-1.5% TiO2, and 0.1-1% total iron oxides including ferrous oxide (calculated as FeO). The weight percentage ratio C1=FeO/(iron oxides?FeO) is greater than or equal to 0.53. The total content of the above components in the composition is greater than 97%. The invention also provides a glass fiber produced using the composition and a composite material including the glass fiber.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 3, 2021
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Guorong Cao, Wenzhong Xing, Lin Zhang, Guijiang Gu
  • Patent number: 10919727
    Abstract: The present disclosure discloses a process for knotting roving packages, comprising steps of: arranging a plurality of roving packages in a single layer or multiple layers; classifying all roving packages into at least one group of roving packages; selecting, from each group of roving packages, two roving packages as a starting roving package and an ending roving package; successively connecting all roving packages in each group of roving packages from the starting roving package to the ending roving package; and, connecting an inner fiber of a roving package other than the starting roving package and the ending roving package in each group of roving packages to an outer fiber of a previous roving package and connecting an outer fiber of this roving package to an inner fiber of a next roving package, or connecting an outer fiber of a roving package other than the starting roving package and the ending roving package in each group of roving packages to an inner fiber of a previous roving package and connecting
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: February 16, 2021
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Haijian Peng, Jiansong Shao
  • Publication number: 20200299168
    Abstract: A method for heating a liquid glass channel of a glass fiber tank furnace. The method comprises: passing oxygen gas and a fuel, via a burner (1), into a channel space (3) for combustion to heat the channel space (3) and a liquid glass (2), wherein the flow rate of the fuel is VF and the flow rate of the oxygen gas is VOX such that the relative velocity difference D=(VF?VOX)/VF. The temperature of the channel is 0-1500° C., and the relative velocity difference D is kept to 25% or more. A pure oxygen combustion method is used for heating a tank furnace channel to reduce waste gas emission and heat loss, thereby achieving the goals of energy conservation, reduced carbon emissions, and improve environment friendliness. The fuel flow rate, relative velocity difference, and related parameters can be controlled according to the temperature of the channel, providing excellent uniformity and accurate control of the temperature of the channel.
    Type: Application
    Filed: September 8, 2016
    Publication date: September 24, 2020
    Applicant: JUSHI GROUP CO., LTD.
    Inventors: Yuqiang ZHANG, Guorong CAO, Peijun SHEN
  • Publication number: 20200299167
    Abstract: A glass tank furnace having a high melting rate. The ratio of the length of the glass tank furnace to the width thereof is 2.3 to 2.8. By reducing the area of a furnace and optimizing the length-to-width ratio thereof, the heat loss of the tank furnace is reduced. By designing an appropriate liquid glass tank depth, the temperature of a furnace bottom is improved and the quality of the liquid glass is guaranteed. By providing pure oxygen burners (3) and electrodes (7), sufficient energy is guaranteed, the melting capability and the heating efficiency of the tank furnace are improved, and energy consumption and the discharge amount of carbon dioxide are significantly reduced. Weirs (5) arranged on the furnace bottom improve the outlet temperature of the liquid glass, reduce energy consumption, lower the temperature of the furnace bottom in the electrode area, prolong the service life of the furnace bottom, and guarantee an increased proportion of auxiliary power.
    Type: Application
    Filed: August 24, 2016
    Publication date: September 24, 2020
    Applicant: JUSHI GROUP CO., LTD.
    Inventors: Yuqiang ZHANG, Guorong CAO, Changying FANG, Lifeng YU, Peijun SHEN, Xianliang ZHAO, Yucang YAN, Xiaodong WENG
  • Publication number: 20200277218
    Abstract: The present disclosure provides a method for knotting glass fibers and a spliced glass fiber bundle. The method for knotting glass fibers comprises the following steps of: equally dividing a glass fiber bundle A and a glass fiber bundle B that are to be connected by knotting into n strands, respectively, and marking the strands as A1-An and B1-Bn, respectively, wherein n is a natural number greater than or equal to 2; and, successively knotting and splicing the glass fiber strands A1-An and the glass fiber strands B1-Bn in one-to-one correspondence to form n spliced knots. The method for knotting glass fibers in the present disclosure is simple, easy to operate and applied to the knotting and splicing of various fiber bundles, and can effectively reduce the size of knots formed by knotting fiber bundles.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Applicant: JUSHI GROUP CO., LTD.
    Inventors: Jiansong SHAO, Haijian Peng
  • Publication number: 20200255315
    Abstract: A glass tank furnace and a glass melting method. The tank furnace comprises a melting portion. The melting portion comprises a melting tank. The melting tank is provided with at least one burner mounted on a crown. Each burner is provided with a gas fuel conduit for supplying gas fuel and an oxygen conduit for providing oxygen. A gas fuel flowmeter and a gas fuel control valve are provided on the gas fuel conduit. An oxygen flowmeter and an oxygen control valve are provided on the oxygen conduit. The gas fuel flowmeter, the gas fuel control valve, the oxygen flowmeter and the oxygen control valve are all connected with a control unit.
    Type: Application
    Filed: June 30, 2016
    Publication date: August 13, 2020
    Applicant: JUSHI GROUP CO., LTD.
    Inventors: Peijun SHEN, Changying FANG
  • Patent number: 10696581
    Abstract: The present invention provides a high-modulus glass fiber composition, a glass fiber and a composite material therefrom. The glass fiber composition comprises the following components expressed as percentage by weight: 55-64% SiO2, 13-24% Al2O3, 0.1-6% Y2O3, 3.4-10.9% CaO, 8-14% MgO, lower than 22% CaO+MgO+SrO, lower than 2% Li2O+Na2O+K2O, lower than 2% TiO2, lower than 1.5% Fe2O3, 0-1.2% La2O3, wherein the range of the weight percentage ratio C1=(Li2O+Na2O+K2O)/(Y2O3+La2O3) is greater than 0.26. Said composition can significantly increase the glass elastic modulus, effectively inhibit the crystallization tendency of glass, decrease the liquidus temperature, secure a desirable temperature range (?T) for fiber formation and enhance the fining of molten glass, thus making it particularly suitable for production of high-modulus glass fiber with refractory-lined furnaces.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: June 30, 2020
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Yuqiang Zhang, Guorong Cao, Lin Zhang, Wenzhong Xing
  • Patent number: 10669189
    Abstract: Provided are a high-performance glass fiber composition, and a glass fiber and composite material thereof. The content, given in weight percentage, of each component of the glass fibre composition is as follows: 52-64% of SiO2, 12-24% of Al2O3, 0.05-8% of Y2O3+La2O3+Gd2O3, less than 2.5% of Li2O+Na2O+K2O, more than 1% of K2O, 10-24% of CaO+MgO+SrO, 2-14% of CaO, less than 13% of MgO, less than 2% of TiO2, and less than 1.5% of Fe2O3. The composition significantly increases the mechanical strength and the elastic modulus of glass, significantly reduces the liquidus temperature and the forming temperature of glass, and under equal conditions, significantly reduces the crystallization rate, the surface tension and the bubble rate of glass. The composition is particularly suitable for the tank furnace production of a high-strength high-modulus glass fiber having a low bubble rate.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: June 2, 2020
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Yuqiang Zhang, Guorong Cao, Lin Zhang, Wenzhong Xing, Xiucheng Hong
  • Patent number: 10590027
    Abstract: Provided are a high performance glass fiber composition, and a glass fiber and a composite material thereof. The content, given in weight percentage, of each component of the glass fiber composition is as follows: 52-67% of SiO2, 12-24% of Al2O3, 0.05-4.5% of Sm2O3+Gd2O3, less than 2% of Li2O+Na2O+K2O, 10-24% of CaO+MgO+SrO, less than 16% of CaO, less than 13% of MgO, less than 3% of TiO2, and less than 1.5% of Fe2O3. The composition significantly improves the mechanical properties and the thermal stability of glass, significantly reduces the liquidus temperature and forming temperature of glass, and under equal conditions, significantly reduces the crystallisation rate of glass. The composition is particularly suitable for the tank furnace production of a high performance glass fiber having excellent thermal stability.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: March 17, 2020
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Yuqiang Zhang, Guorong Cao, Lin Zhang, Wenzhong Xing, Guijiang Gu
  • Patent number: 10399889
    Abstract: The present invention provides a glass fiber composition, glass fiber and composite material therefrom. The glass fiber composition comprises the following components expressed as percentage by weight: 58.5-62.5% SiO2, 14.5-17% Al2O3, 10.5-14.5% CaO, 8-10% MgO, 0.5%<Li2O?1%, 0.05-1% Na2O, 0.05-1% K2O, 0.05-1% Fe2O3, 0.15-1.5% TiO2, wherein the range of the molar percentage ratio C1=Li2O/Al2O3 is 0.105-0.22, and the range of the molar percentage ratio C2=MgO/(CaO+MgO) is 0.435-0.55. Said composition can increase the mechanical properties of the glass while reducing the glass viscosity, crystallization risk and amount of bubbles, thereby making it more suitable for large-scale production with refractory-lined furnaces.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: September 3, 2019
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Lin Zhang, Guorong Cao, Wenzhong Xing, Guijiang Gu, Xiucheng Hong
  • Patent number: 10377662
    Abstract: The present invention provides a glass fiber composition, a glass fiber and a composite material therefrom. The glass fiber composition comprises the following components expressed as percentage by weight: 53-64% SiO2, greater than 19% and lower than 25% Al2O3, 0.05-7% Y2O3+La2O3+Gd2O3, not greater than 1% Li2O+Na2O+K2O, 10-24% CaO+MgO+SrO, 1.5-12% CaO, lower than 2% TiO2, lower than 1.5% Fe2O3.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: August 13, 2019
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Yuqiang Zhang, Guorong Cao, Lin Zhang, Wenzhong Xing, Guijiang Gu
  • Patent number: 10351465
    Abstract: The present invention provides a glass fiber composition, glass fiber and composite material therefrom. The glass fiber composition comprises the following components expressed as percentage by weight: 58-63% SiO2, 13-17% Al2O3, 6-11.8% CaO, 7-11% MgO, 3.05-8% SrO, 0.1-2% Na2O+K2O+Li2O, 0.1-1% Fe2O3, 0-1% CeO2 and 0-2% TiO2, wherein a weight percentage ratio C1=(MgO+SrO)/CaO is greater than 1. Said composition greatly improves the refractive index of glass, significantly shields against harmful rays for humans and further reduces glass crystallization risk and production costs, thereby making it more suitable for large-scale production with refractory-lined furnaces.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: July 16, 2019
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Guorong Cao, Wenzhong Xing, Lin Zhang, Guijiang Gu
  • Publication number: 20190210906
    Abstract: An arrangement structure for bubbling apparatuses of a furnace, comprising bubbling apparatuses disposed in a melting pool (11) of a furnace. Each bubbling apparatus comprises a bubbling tank (8) and a bubbling tube (9). The bubbling tank (8) is provided at the bottom of the melting pool (11) and disposed in recessed fashion. The bubbling tube (9) is mounted in the bubbling tank (8).The structure can efficiently enhance the physical effect of a bubbling gas on molten glass and improve the quality and production efficiency of the molten glass.
    Type: Application
    Filed: September 1, 2017
    Publication date: July 11, 2019
    Applicant: JUSHI GROUP CO., LTD.
    Inventor: Yonggen QIAN
  • Patent number: 10329189
    Abstract: A high-modulus glass fiber composition, and a glass fiber and a composite material therefrom. The glass fiber composition comprises the following components in weight percentage: SiO2 55.7 to 58.9%, Al2O3 15 to 19.9%, Y2O3 0.1 to 4.3%, La2O3 less than or equal to 1.5%, CeO2 less than or equal to 1.2%, CaO 6 to 10%, MgO 9.05 to 9.95%, SrO less than or equal to 2%, Li2O+Na2O+K2O less than or equal to 0.99%, Li2O less than or equal to 0.65%, Fe2O3 less than 1%, TiO2 0.1 to 1.5%; wherein, the range of the weight percentage ratio C1=Y2O3/(Y2O3+La2O3+CeO2) is greater than 0.6. The composition can greatly improve the elastic modulus of glass, significantly reduce liquidus temperature and forming temperature of the glass, greatly reduce the crystallization rate of molten glass and bubble amount under the same conditions, and therefore is more suitable for large-scale tank furnace production of high-modulus fiberglass with low bubble amount.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: June 25, 2019
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Yuqiang Zhang, Guorong Cao, Lin Zhang, Wenzhong Xing, Guijiang Gu