Patents Assigned to JX Nippon Oil & Energy Corporation
  • Patent number: 9513051
    Abstract: There is provided a method for recovering hydrocarbon compounds from a gaseous by-products generated in the Fisher-Tropsch synthesis reaction, the method comprising a pressurizing step in which the gaseous by-products are pressurized, a cooling step in which the pressurized gaseous by-products are pressurized to liquefy hydrocarbon compounds in the gaseous by-products, and a separating step in which the hydrocarbon compounds liquefied in the cooling step are separated from the remaining gaseous by-products.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: December 6, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9511552
    Abstract: A method for producing an optical substrate includes: a step of preparing a long film-shaped mold having a concave-convex pattern surface having a concave-convex pattern; a step of forming a coating film made of a sol-gel material on the concave-convex pattern surface of the film-shaped mold; a step of adhering the coating film, which is formed on the concave-convex pattern surface of the film-shaped mold, to a substrate by arranging the concave-convex pattern surface of the film-shaped mold on which the coating film made of the sol-gel material is formed to face the substrate and by pressing a pressing roll against a surface of the film-shaped mold on a side opposite to the concave-convex pattern surface; a step of releasing the film-shaped mold from the coating film; and a step of curing the coating film adhered to the substrate.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: December 6, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shigetaka Toriyama, Suzushi Nishimura, Naoto Kozasa, Madoka Takahashi
  • Publication number: 20160347699
    Abstract: A method for producing a 5-norbornene-2-spiro-?-cycloalkanone-??-spiro-2?-5?-norbornene, comprising: a first step of forming a specific Mannich base by reacting a specific carbonyl compound and a specific amine compound with each other in an acidic solvent comprising a formaldehyde derivative and an acid represented by a formula: HX (in the formula, X represents F or the like), to thereby obtain a reaction liquid comprising the Mannich base in the acidic solvent; and a second step of reacting the Mannich base and a specific diene compound with each other by adding an organic solvent, a base in an amount of 1.0 to 20.0 mole equivalents to the acid, and the diene compound to the reaction liquid, and then heating the reaction liquid, to thereby form a specific 5-norbornene-2-spiro-?-cycloalkanone-??-spiro-2?-5?-norbornene, wherein a content of the acid in the acidic solvent used in the first step is 0.01 to 0.075 mole equivalents to the ketone group of the carbonyl compound.
    Type: Application
    Filed: January 9, 2015
    Publication date: December 1, 2016
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Rieko FUJISHIRO, Shinichi KOMATSU, Takeshi KOIKE
  • Publication number: 20160347763
    Abstract: A method for producing an epoxy compound by reacting a compound having a carbon-carbon double bond with hydrogen peroxide in the coexistence of the compound having a carbon-carbon double bond, aqueous hydrogen peroxide, a powder of a solid catalyst support and a powder of a solid catalyst, wherein the solid catalyst comprises an isopolyacid, and the isopolyacid is produced from a catalyst raw material comprising (a) tungstic acid or a salt thereof and (b) at least one selected from the group consisting of a salt of an alkaline earth metal and a cationic polymer.
    Type: Application
    Filed: November 17, 2014
    Publication date: December 1, 2016
    Applicants: JX NIPPON OIL & ENERGY CORPORATION, OSAKA UNIVERSITY
    Inventors: Junko ICHIHARA, Shunro YAMAGUCHI, Atsushi KAMEYAMA, Takashi SUZUKI, Takashi MORIKITA
  • Patent number: 9505986
    Abstract: The aviation fuel oil base of the present invention is obtained by hydrotreating an oil to be treated containing an oxygen-containing hydrocarbon compound derived from an animal or vegetable oils and fat and a sulfur-containing hydrocarbon compound and then hydroisomerizing the resultant hydrotreated oil, wherein a yield of a fraction having a boiling range of 140 to 300° C. is 70 mass % or more; an isoparaffin content is 80 mass % or more; a content of isoparaffin having 2 or more branches is 17 mass % or more; an aromatic content is less than 0.1 vol %; an olefin content is less than 0.1 vol %; a sulfur content is less than 1 mass ppm; and an oxygen content is less than 0.1 mass %.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: November 29, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yasutoshi Iguchi, Hideki Ono, Akira Koyama
  • Patent number: 9499453
    Abstract: A catalyst filling apparatus is for a bubble column slurry bed reactor for the FT synthesis reaction. The apparatus includes: a slurry preparation tank installed adjacent to the reactor and configured to prepare a slurry S from a FT synthesis reaction catalyst and a slurry preparation oil; an upper part communication line configured to direct the slurry from the reactor to the slurry preparation tank; a lower part communication line configured to direct the slurry in the slurry preparation tank to the reactor; and a pressure equalizing line configured to communicate the reactor with the slurry preparation tank. The upper part communication line is downwardly inclined from the reactor toward the slurry preparation tank, and the lower part communication line is upwardly inclined from the reactor toward the slurry preparation tank. An inert gas introduction device is provided on the slurry preparation tank.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: November 22, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9493714
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch (FT) synthesis reaction using a catalyst within a slurry bed reactor is fractionated into a distilled oil and a column bottom oil in a rectifying column, part of the column bottom oil is flowed into a first transfer line that connects a column bottom of the rectifying column to a hydrocracker, at least part of the column bottom oil is flowed into a second transfer line branched from the first transfer line and connected to the first transfer line downstream of the branching point, the amount of the catalyst fine powder to be captured is monitored while the catalyst fine powder in the column bottom oil that flows in the second transfer line are captured by a detachable filter provided in the second transfer line, and the column bottom oil is hydrocracked within the hydrocracker.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 15, 2016
    Assignees: JAPAN OIL, GAS, AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Patent number: 9493708
    Abstract: A process for producing a caking additive for coke production, the process including a step of extracting a solvent deasphalted pitch that can be used as a caking additive for coke production from a residue containing at least one of an atmospheric residue obtained by atmospheric distillation of a crude oil and a vacuum residue obtained by atmospheric distillation and vacuum distillation of a crude oil, wherein the extraction is performed using, as a solvent, a light reformate obtained by catalytic reforming a naphtha fraction that is fractionated from a crude oil by atmospheric distillation of the crude oil.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: November 15, 2016
    Assignees: JX NIPPON OIL & ENERGY CORPORATION, MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yoshikazu Nakamura, Takushi Nagashima, Kenjiro Matsuoka, Kouichi Inoue, Daisuke Anraku
  • Publication number: 20160327695
    Abstract: An optical substrate according to one embodiment includes a support substrate, and a projection-depression structure layer on a surface of which shapes of projections and depressions are formed, the projection-depression structure layer being laminated on the support substrate. The extending directions of projection portions contained in the projection-depression structure layer are irregularly distributed seen in planar view. An outline seen in planar view of a projection portion contained in a region per unit area of the projection-depression structure layer includes more straight line sections than curved line sections.
    Type: Application
    Filed: December 17, 2014
    Publication date: November 10, 2016
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Satoshi MASUYAMA, Takashi SEKI, Maki FUKUDA, Suzushi NISHIMURA
  • Patent number: 9487713
    Abstract: The present invention provides a method for producing a hydrocarbon oil, including performing a hydrocracking by continuously feeding, to a hydrocracking reactor containing a hydrocracking catalyst, a wax to be processed including: a raw wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C; and an uncracked wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C, which uncracked wax is separated from a hydrocracking product discharged from the reactor, to thereby yield a hydrocarbon oil including hydrocarbons with a boiling point of 360° C or lower.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: November 8, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Marie Iwama, Kazuhiko Tasaka, Yuichi Tanaka
  • Patent number: 9487726
    Abstract: The present invention provides an imide compound represented by the following general formula (1). The imide compound of the present invention, particularly when used as a thickening agent for grease, is excellent in durability at high temperatures. [wherein X represents a tetravalent residue obtained by removing four carboxylic groups from an aromatic tetracarboxylic acid, Y represents a divalent residue obtained by removing two amino groups from an aliphatic diamine or an aromatic diamine, and R represents a residue obtained by removing an amino group from an aliphatic monoamine, an alicyclic monoamine, or an aromatic monoamine.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 8, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Kentaro Yamaguchi, Osamu Kurosawa, Miki Fujiwara, Ryuichi Ueno
  • Patent number: 9487457
    Abstract: The present method for producing monocyclic aromatic hydrocarbons is a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms. This method includes a cracking and reforming reaction step of bringing oil feedstock into contact with a catalyst to cause a reaction and obtain a product containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms, a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms separated from the product formed by the cracking and reforming reaction step, and a first returning step of returning at least a portion of toluene obtained by the purification and recovery step to the cracking and reforming reaction step.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 8, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yasuyuki Iwasa, Ryoji Ida, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Akira Utatsu
  • Publication number: 20160319199
    Abstract: Provided are petroleum coke having a sufficiently small coefficient of thermal expansion (CTE) and yielding sufficiently suppressed puffing phenomenon and a method for stably producing the petroleum coke. Specifically, the method for producing the petroleum coke comprises the step of coking feedstock oil comprising light oil having an end point of distillation of 380° C. or less, and heavy oil having an initial boiling point of 200° C. or more and comprising 50% by mass or more of an aromatic component, sulfur content of 0.5% by mass or less, and nitrogen content of 0.2% by mass or less.
    Type: Application
    Filed: December 19, 2014
    Publication date: November 3, 2016
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Hiroshi Kawachi, Kazuhisa Nakanishi, Toshitaka Fujii, Takashi Oyama
  • Patent number: 9475036
    Abstract: The hydrotreating catalyst of the present invention is a hydrotreating catalyst including a catalyst support including an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrotreating catalyst contains a carbonaceous substance including a carbon atom, and the content of the carbonaceous substance in the hydrotreating catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: October 25, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Patent number: 9476006
    Abstract: A method for producing a highly aromatic base oil of the present invention includes a step of hydrorefining a clarified oil to obtain a highly aromatic base oil having an aromatic content of 50% by mass or more determined by a column chromatography analysis method. The step of hydrorefining a clarified oil is preferably performed under conditions of a hydrogen pressure of 5.0 to 20.0 MPa, a temperature of 280 to 400° C., a hydrogen oil ratio of 300 to 750 NL/L, and a space velocity of 0.3 to 2.0 h?1. According to the present invention, a highly aromatic base oil used for rubber processing, asphalt reclamation and the like, and a novel method for producing a highly aromatic base oil can be provided.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: October 25, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Morishima, Takashi Ito
  • Patent number: 9469801
    Abstract: A working fluid composition for a refrigerating machine of the present invention comprises: a refrigerating machine oil comprising a complex ester as a base oil; and a hydrocarbon refrigerant having 2 to 4 carbon atoms, the complex ester being obtainable by further esterifying, with at least one selected from a monohydric alcohol having 1 to 20 carbon atoms and a fatty acid having 2 to 20 carbon atoms, an ester intermediate obtained by reacting a neopentyl polyol with a dibasic acid, and having an acid value of 0.5 mgKOH/g or less, the refrigerating machine oil having a kinematic viscosity at 100° C. of 2 to 50 mm2/s.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 18, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Masanori Saito, Takeshi Okido, Ken Sawada, Kuniko Adegawa
  • Publication number: 20160297942
    Abstract: A production method for a fiber-reinforced composite material comprises: a step of stacking a prepreg plurally to obtain a prepreg-stacked body; and a step of heating the prepreg-stacked body to cure a resin, wherein the prepreg comprises: a reinforcing fiber layer including reinforcing fibers and a resin composition with which the space between fibers of the reinforcing fibers is impregnated and which contains (A) a benzoxazine resin, (B) an epoxy resin, and (C) a curing agent having 2 or more phenolic hydroxy groups in a molecule; and a surface layer provided on at least one surface of the reinforcing fiber layer and containing (A) to (C) components, and (D) polyamide resin particles having an average particle size of 5 to 50 ?m.
    Type: Application
    Filed: October 28, 2014
    Publication date: October 13, 2016
    Applicants: JX NIPPON OIL & ENERGY CORPORATION, FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Masaki MINAMI, Takayuki MATSUMOTO, Yoshihiro FUKUDA, Naoyuki SEKINE, Masanori NAKAJIMA
  • Publication number: 20160296913
    Abstract: A method for producing a catalyst for a Fischer-Tropsch synthesis, comprising a reduction step of obtaining the catalyst for a Fischer-Tropsch synthesis through a reduction treatment of an unreduced catalyst, wherein the unreduced catalyst comprises a carrier obtained by calcining a carrier precursor containing silica and a zirconium compound, and cobalt oxide and/or ruthenium oxide carried on the carrier; the content of zirconium in the unreduced catalyst is 0.01 to 7% by mass in terms of zirconium oxide relative to the total mass of the unreduced catalyst; and in the reduction step, a reducing gas is brought into contact with the unreduced catalyst under the conditions of a GHSV of 200 h?1 or more and 1500 h?1 or less and a linear velocity of 20 mm/s or more to perform the reduction treatment of the unreduced catalyst.
    Type: Application
    Filed: November 18, 2014
    Publication date: October 13, 2016
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Koshi TAKAHAMA, Yoshiyuki NAGAYASU, Kazuaki HAYASAKA
  • Patent number: 9464186
    Abstract: A resin composition prepared by blending an epoxy compound represented by the following formula (1), an acid anhydride, and a curing accelerator, wherein the epoxy compound is purified in such a way that, in a chromatogram obtained by gas chromatographic analysis, a ratio of a peak area B of peaks derived from a heavier molecular mass portion having longer retention times than the epoxy compound to a peak area A of peak(s) derived from the epoxy compound B/A is 2.0×10?3 or less. [In the formula, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, and R12 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, or an alkoxy group which may have a substituent.].
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: October 11, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Atsushi Kameyama, Takashi Suzuki, Ryuichi Ueno, Isao Ishikura
  • Patent number: 9464250
    Abstract: The present invention provides a process of producing an aviation fuel base oil having excellent combustibility, oxidation stability and life cycle characteristics, hydrotreating in the presence of hydrogen a feedstock comprising an oxygen-containing hydrocarbon compound originating from an animal or vegetable fat (preferably an animal or vegetable fat that contains fatty acids each having 10 to 14 carbon atoms in the fatty acid carbon chain in the total amount of 60 percent by mass or more) and a sulfur-containing hydrocarbon compound. The present invention also provides a process for producing an aviation fuel base oil by blending such an aviation fuel base oil and an aviation fuel base oil produced by refining crude oil.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: October 11, 2016
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Akira Koyama, Tatsuo Hamamatsu, Yasutoshi Iguchi, Hideshi Iki