Abstract: A positioning mechanism for use in conjunction with rod and connector construction toy sets, such as K'NEX, to enable incrementally adjustable positioning of rods relative to associated connectors. The new mechanism includes first and second positioning members. The first, positioning member is, mounted on a rod for angular movement and includes a cylindrical outer surface with multiple detent notches. The second positioning member has a convergent pair of resilient fingers engaged with a spaced pair of the detent notches to releasably retain the first positioning member in any incrementally adjusted position. The second positioning member includes mounting studs engageable with laterally spaced connectors of an assembly, and a separate locating element engageable with at least one of the connectors to fix the second positioning member against rotation.
Abstract: A toy car race track set comprised of a plurality of easily connectible track sections, in which the track sections have novel provisions for integrating the track sections with structures formed with K'NEX rod and connector elements, including but not limited to structures for elevating track sections above a support or above other track sections, providing obstructions on the race course, and the like. A variety of shapes and forms of track sections enables a substantially limitless variety of track configurations to be assembled. Each section is provided at each end with at least one tongue element and one slot element positioned such that the tongue element of one section is received in the slot of an adjacent section with a desired, snap-in action substantially preventing unintended separation. Optional locking pins are provided for positively locking the track sections to other sections when desired.
Abstract: An offset matrix adapter for integrating existing components of K'nex construction toys with existing components of Lego-style brick systems, notwithstanding that the spacing matrices of the systems are incompatible. Adapter bricks or bases are provided, having adapter sockets with the same spacing matrix as the studs of the Lego-style bricks. Special K'nex offset matrix adapters are provided, consisting of a pair of spaced-apart mounting stems for reception in a pair of spaced-apart adapter sockets. An offset rod is rigidly supported at the tops of the mounting stems but is offset laterally from the axes of the mounting stems by a distance which is preferably about one-third of the spacing between adapter sockets. By orienting a pair of matrix adapters with the rods offset alternatively inward or outward, the spacing differences between K'nex and Lego-style systems can be reduced to insignificance, allowing the two systems to be easily integrated.
Type:
Grant
Filed:
October 16, 2006
Date of Patent:
February 23, 2010
Assignee:
K'NEX Limited Partnership Group
Inventors:
Joel I. Glickman, Matthias F. W. Doepner
Abstract: A connector element for a rod and connector construction toy set of the type enabling a lateral snap-in assembly of rod elements into sockets of the connector is formed of two hingedly connected connector half sections. Each connector half section is formed along one edge with one male and one female hinge element such that two identical connector half sections can be joined together, by a snap-together action of the hinge elements, to form a connector element with one half pivotally movable relative to the other half. Each connector half section is formed with a plurality of rod-engaging sockets accommodating the construction of complex, three-dimensional structures. Advantageously, the two connector half sections are of identical construction, such that both components may be formed of a single mold configuration.
Abstract: A method for constructing three-dimensional structures with a multi-part construction toy comprised of connectable component parts. A flat construction plan is provided illustrating in full size a two-dimensional structure constituting all or a large part of the intended three-dimensional structure. The connectable component parts are placed directly over their respective illustrations on the flat plan, and joined to form the two-dimensional structure. The two-dimensional structure may include a pair of opposite side subassemblies joined by one or more reorientable bridging elements, for example a flexible panel. After completion, the two-dimensional structure is picked up and erected to three-dimensional form by bending or pivoting the bridging element to position the opposite side subassemblies in spaced apart, usually parallel relation. The free ends of the subassemblies are then joined, usually by a bridging element, which may form an end element of the two-dimensional structure.