Abstract: An image processing device includes a heating unit, a memory, and a control unit. The heating unit heats a sheet at a temperature which is determined in each type of job in processing of a job related to image processing. The memory stores a type of job, and the number of sheets which is processed in the job, in each of job which is not executed yet. The control unit rearranges an executing order of jobs which are not executed yet so that jobs of the same type are continuously performed, when there is a job of which the number of sheets to be processed in one job is larger than the predetermined number of sheets.
Abstract: An image forming apparatus includes a toner container attaching unit to which a toner container is to be attached, the toner container attaching unit including an apparatus-side terminal that comes into contact with a container-side terminal of the toner container and an apparatus-side coupling that engages with a container-side coupling of the toner container, and a control unit. The control unit is configured to execute a first process to acquire information of the toner container via the apparatus-side terminal, and cause the apparatus-side coupling to be rotated based on a result of the first process.
Abstract: An image processing device includes a display unit and a processor configured to determine whether or not functions of the image processing device are executable by the image processing device, and cause the display unit to display a screen including a first item corresponding to a first function that is determined to be executable and a second item corresponding to a second function that is determined to be not executable. The first item is displayed on the screen in a first display format, and the second item is displayed on the screen in a second display format that is less conspicuous than the first display format.
Abstract: In an embodiment, an antenna is disclosed. The antenna comprises: a substrate of dielectric material, the substrate being substantially planar and defining a first surface and a second surface opposed to the first surface; an electrically conductive ground plane on the first surface, the ground plane defining a slot; a first feed line configured to receive a first input signal having a frequency within an operating frequency range, the first feed line extending over the slot on the second surface in a first direction by a length of between 0.3 and 0.
Type:
Grant
Filed:
January 16, 2015
Date of Patent:
August 20, 2019
Assignee:
Kabushiki Kaisha Toshiba
Inventors:
Sema Dumanli Oktar, Ian James Craddock, David Rhys Gibbins
Abstract: A paper feeding device of an embodiment includes a paper feed tray, a blower, and a flow regulating member. A paper bundle in which a plurality of sheets of paper are stacked can be placed on the paper feed tray. The blower is positioned next to the paper bundle placed on the paper feed tray. The blower can generate airflow. The flow regulating member is positioned above the paper bundle placed on the paper feed tray. The airflow from the blower causes the flow regulating member to generate a negative pressure between the flow regulating member and the uppermost sheet of paper of the paper bundle.
Abstract: The voltage to current converter according to the present embodiments includes a charge transfer device, a smoother and a current generator. The charge transfer device accumulates charge corresponding to an input voltage, and transfers the accumulated charge. The smoother accumulates the transferred charge to smooth an output voltage. The current generator generates a current corresponding to the input voltage by use of a current corresponding to the charge accumulated in the smoother.
Abstract: There are provided a substrate processing apparatus and a substrate processing method realizing an effective reduction of a voltage change of a substrate on an electrode to reduce the variation of incident energy of ions entering the substrate. The substrate processing apparatus includes: a first electrode holding a substrate on a main surface of the first electrode; a second electrode facing the first electrode; a RF power source applying to the first electrode a RF voltage whose frequency is equal to or higher than 40 MHz; and a pulse voltage applying unit applying to the first electrode a pulse voltage decreasing in accordance with a lapse of time, by superimposing the pulse voltage on the RF voltage.
Type:
Grant
Filed:
February 19, 2015
Date of Patent:
August 20, 2019
Assignees:
Kabushiki Kaisha Toshiba, Tokyo Electron Limited
Abstract: According to one embodiment, a manufacturing control system includes a reference data creating unit, first, second and third data storing units, first, second and third data extracting units. The reference data creating unit creates reference data including a reference time related to a product. The first data storing unit stores data related to parts acceptance inspection and related to assembly of the product. The second data storing unit stores data related to inspection in manufacturing. The third data storing unit stores data related to quality assurance inspection and of acceptance inspection at a customer site. The first data extracting unit extracts data related to latest parts acceptance inspection and related to latest assembly of the product. The second data extracting unit extracts data related to inspection in latest manufacturing. The third data extracting unit extracts data related to latest quality assurance inspection and of latest acceptance inspection.
Abstract: A data processing device according to an embodiment includes a sub-vector group generating unit, a codebook generating unit, and a converting unit. The sub-vector group generating unit generates, from a feature vector set of N number of D-dimensional feature vectors, M number of sub-vector groups (where M<D holds true). Each of the M number of sub-vector groups includes N number of dimension-variable sub-vectors obtained from the N number of D-dimensional feature vectors. For each of the M number of sub-vector groups, the codebook generating unit performs clustering of the N number of dimension-variable sub-vectors, and generates a codebook in which the representative vector of each cluster is associated with an index. The converting unit performs product quantization using the codebook and converts each of the N number of D-dimensional feature vectors into a compressed code made of a combination of M number of indexes.
Type:
Application
Filed:
September 10, 2018
Publication date:
August 15, 2019
Applicants:
Kabushiki Kaisha Toshiba, Toshiba Digital Solutions Corporation
Abstract: A reduction electrode of an embodiment includes a metal base material and a plurality of metal nanowires provided on the metal base material. The plurality of metal nanowires include metal nanowires whose average height of contour curve of surface is 20 nm or less for 50% or more in a number ratio. The plurality of metal nanowires are formed by reducing a plurality of metal oxides each having a nanowire shape formed on the metal base material by an electrochemical reduction method. A reduction process of the metal oxides includes a first process of passing a current under a constant current condition where an absolute value is 5 mA/cm2 or more through the plurality of metal oxides, and a second process of passing a current under a constant potential condition through the plurality of metal oxides.
Abstract: An etching method according to an embodiment includes forming an uneven structure including a projection on a surface of a semiconductor substrate; forming a catalyst layer including a noble metal on the surface selectively at a top surface of the projection; and supplying an etchant to the catalyst layer to cause an etching of the semiconductor substrate with an assist from the noble metal as a catalyst.
Abstract: A determination device according to an embodiment includes one or more processors. The processors identify a worker position. The processors identify a job area which includes the worker position. The processors select, from among a plurality of determiners meant for determining job details of persons from movement information indicating movements of persons, at least one determiner associated with the job area. The processors generate worker movement information indicating movements of a worker. The processors use the at least one selected determiner and determine a job type indicating job details of the worker based on the worker movement information.
Abstract: An electrochemical reaction device includes: an electrolytic solution tank including a first storage part storing a first electrolytic solution and a second storage part storing a second electrolytic solution; a reduction electrode immersed in the first electrolytic solution; and an oxidation electrode immersed in the second electrolytic solution. The second electrolytic solution contains a substance to be oxidized. The first electrolytic solution has a first liquid phase containing water and a second liquid phase containing an organic solvent and being in contact with the first liquid phase. At least one liquid phase of the first liquid phase or the second liquid phase contains a substance to be reduced and is in contact with the reduction electrode.
Abstract: According to one embodiment, an electronic apparatus, includes: transmission circuitry configured to transmit a first request of power feeding; power reception circuitry configured to receive a first wireless signal in response to the first request of power feeding, and charge a rechargeable battery with a power from the first wireless signal; and controlling circuitry configured to determine a transmission timing of a second request of power feeding, based on a reception history of the power reception circuitry.
Abstract: According to one embodiment, an analysis apparatus includes an acquisition unit and a processor. The acquisition unit acquires first information with a first time length between a first time and a second time. The first information is based on motion of an object person. The processor extracts multiple similarity points from the first information. The multiple similarity points are similar to each other in the first information. The processor calculates a time interval between the similarity points.
Abstract: In one embodiment, a power generation planning support apparatus includes an acquiring module configured to acquire a physical quantity that represents a startup condition of a turbine. The apparatus further includes a first storage module configured to store first information that represents a relationship between a startup schedule of the turbine and the physical quantity. The apparatus further includes a predicting module configured to predict the startup schedule of the turbine, based on the physical quantity acquired by the acquiring module and the first information stored in the first storage module. The apparatus further includes an outputting module configured to output the startup schedule predicted by the predicting module.
Abstract: According to one embodiment, a sheet binding device includes a tape support base, a tape holder, and a first displacement mechanism. The tape support base supports a tape. The tape holder is movable in a first direction. The first displacement mechanism displaces the tape holder from a first position that is a position away from the tape to a second position at which the tape holder is capable of coming into contact with the tape when the tape holder moves toward the tape support base and receives the tape.
Abstract: A photoelectrochemical reaction device of an embodiment includes: a first stack including a first electrode, a second electrode, and a photovoltaic layer provided therebetween; a second stack including a third electrode electrically connected to the first electrode, a fourth electrode electrically connected to the second electrode, and an ion migration layer provided therebetween; and an electrolytic solution tank storing a first electrolytic solution in which the third electrode is immersed and a second electrolytic solution in which the fourth electrode is immersed. One of the third and fourth electrodes causes an oxidation reaction, and the other of the third and fourth electrodes causes a reduction reaction. The third and fourth electrodes have ion permeability. An area of the second stack is larger than that of the first stack.
Abstract: A semiconductor device according to an embodiment includes a first electrode; a second electrode; a silicon carbide layer disposed between the first electrode and the second electrode; an n-type silicon carbide region disposed in the silicon carbide layer and having a first nitrogen concentration; a first p-type silicon carbide region disposed in the silicon carbide layer between the n-type silicon carbide region and the first electrode and having a second nitrogen concentration higher than the first nitrogen concentration; and a second p-type silicon carbide region disposed in the silicon carbide layer between the first p-type silicon carbide region and the first electrode, having a third nitrogen concentration higher than the second nitrogen concentration, and having a p-type impurity concentration higher than that of the first p-type silicon carbide region.
Abstract: An electrode material for a nonaqueous electrolyte battery that includes a composite particle that contains a silicon dioxide particle having an average primary particle size of D1, a silicon particle having an average primary particle size of D2, and a carbon material, where D1 is 5 nm or more and 80 nm or less and the ratio D2/D1 is 0.3 or more and 8 or less.