Abstract: A spot welding method includes a heating step of energizing an electrode in pressure contact with an Al alloy member to heat and melt a join part by resistance heating and a cooling step of cooling the join part after the heating step in a state in which the electrode is in pressure contact with the Al alloy member. The alloy is a wrought alloy of Mg: 0.2 to 1.2 mass %, Si: 0.4 to 1.5%, and Cu: 1.1% or less or a casting alloy of Si: 7 to 11% and Mg: 0.1 to 0.4% with respect to 100% as a whole. The cooling step includes a first cooling process performed with a reduced amount of input energy to the join part as compared with the heating step and a second cooling process performed after the first cooling process at a higher cooling rate than that in the first cooling process.
Type:
Application
Filed:
February 25, 2021
Publication date:
September 2, 2021
Applicants:
KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
Abstract: A noise filter may include: a first conductive line extending between an input and an output terminal portion, wherein the first conductive line includes an input-side conductive line extending between the input terminal portion and a branch portion, and an output-side conductive line extending between the output terminal portion and the branch portion; a second conductive line connected to the branch portion of the first conductive line, wherein a capacitor is on the second conductive line; and a magnetic body surrounding at least a part of a circumference of at least a part of the first conductive line, wherein the magnetic body is configured to magnetically couple the input-side and the output-side conductive lines such that at least an equivalent series inductance of the capacitor and a parasitic inductance of the second conductive line are reduced by a mutual inductance between the input-side conductive line and the output-side conductive line.
Type:
Application
Filed:
July 5, 2019
Publication date:
September 2, 2021
Applicant:
KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
Inventors:
Atsuhiro TAKAHASHI, Katsuya NOMURA, Takashi KOJIMA
Abstract: A heat-resistant member includes a base member composed of an isotropic graphite and a film with a single layer or multiple layers formed on the entire or partial surface of the base member. The film includes a dense WC layer with a single layer or multiple layers, and the dense WC layer includes WC as a main component and has a porosity of less than 3%. The film may further include a porous WC layer with a single layer or multiple layers formed on an entire or partial surface of the dense WC layer. In this case, the porous WC layer preferably includes WC as a main component and has a porosity larger than that of the dense WC layer.
Abstract: A secondary battery 10 includes a first electrode 11, a first current collection part 12, a second electrode 16, and a separation membrane 21. The first electrode 11 is a columnar body including a first active material. The first current collection part 12 is connected to the first electrode. The second electrode 16 includes a second active material. The separation membrane 21 has ionic conductivity and insulates the first electrode 11 from the second electrode 16. The secondary battery 10 has a structure in which a plurality of the first electrodes 11 are bundled together, with each of the first electrodes 11 being adjacent to the second electrode 16 with the separation membrane 21 disposed therebetween. The plurality of the first electrodes 11 is connected to the first current collection part 12 via a connection part 13 formed of a low-melting-point metal.
Abstract: A method of manufacturing a group III nitride semiconductor substrate may comprise introducing group III element vacancies to a first region of the group III nitride semiconductor substrate. The method may comprise introducing an acceptor element to a second region of the group III nitride semiconductor substrate. The second region may contact the first region at least in part. The method may comprise performing annealing to activate the acceptor element in the second region.
Abstract: An apparatus for manufacturing compound single crystal includes a crystal growth section to hold a seed crystal, a gas supply section to supply a metal-contained gas and a reactant gas toward the seed crystal, and a heating section to heat the seed crystal and a metal source. The gas supply section includes a crucible holding the metal source, a carrier gas supply unit, and a reactant gas supply unit. A porous baffle plate is provided in an opening of the crucible. The porous baffle plate satisfies a relationship of 80%?(1?VH/VB)×100<100% and a relationship of 0.0003<a2/L<1.1. VB is an apparent volume of the porous baffle plate, VH is a total volume of the through-holes contained in the porous baffle plate, “a” is a diameter of the through-hole, and L is a length of the through-hole.
Abstract: A method includes introducing a protein having double-stranded DNA cleavage activity itself into the eukaryote or a part of the eukaryote, and rearranging DNA of the eukaryote by the protein in the eukaryote or a part of cells of the eukaryote.
Abstract: A heat transport fluid includes a base fluid; and solid particles which are dispersed in the base fluid, have an average particle diameter of 200 to 400 nm, and have a potential difference of 35 mV or more from the base fluid, and a heat transport device uses the heat transport fluid.
Abstract: A highly reliable bonded structure having excellent thermal fatigue resistance characteristics and thermal stress relaxation characteristics is provided. The bonded structure of the present invention comprises a first member, a second member capable of being bonded to the first member, and a bonding part interposed between a first bond surface at the first member side and a second bond surface at the second member side to bond the first member and the second member. The bonding part has at least a bonding layer, a reinforcing layer, and an intermediate layer. The bonding layer is composed of an intermetallic compound and bonded to the first bond surface.
Abstract: A power supply device includes battery circuit modules 10a, 10b, 10c, . . . each having a battery B, a first switching element S1 connected in parallel to the battery B, and a second switching element S2 connected in series to the battery B between the battery B and the first switching element S1, the second switching element S2 being turned off when the first switching element S1 is turned on, a battery circuit module group 100 in which the battery circuit modules 10a, 10b, 10c, . . . are connected in series, and a control circuit 11 for outputting, at intervals of a certain time, a gate signal for turning on and off the first switching element S1 and the second switching element S2 to the battery circuit modules 10a, 10b, 10c, . . . .
Abstract: A planetary gear mechanism has a first planetary gear train that includes a ring gear to which power from a main power source is input, a planetary carrier that is connected to a first output shaft, a first planetary pinion that is turnably supported by the planetary carrier, and a first sun gear that is connected to a distribution electric motor. The planetary gear mechanism also has a second planetary gear train that includes the ring gear, the planetary carrier, the first planetary pinion, a second planetary pinion that is turnably supported by the planetary carrier, and a second sun gear that is connected to a second output shaft.
Abstract: A carbon material precursor comprises an acrylamide-based polymer having a weight-average molecular weight of 10,000 to 2,000,000 and a polydispersity of the molecular weight (weight-average molecular weight/number-average molecular weight) of 5.0 or less.
Abstract: A heat management control device for a vehicle that includes an electric motor and a power supply section that includes a storage battery and that supplies electrical power to the electric motor. The heat management control device includes a charging device that charges the storage battery through a connection to an external power source, a heat exchanger that performs heat exchange of heat generated by the charging device during charging with fluid flowing in a specific transport path. The heat management control device includes a heat storage section that uses a chemical reaction partway along the specific transport path in order to recover heat from the fluid and that stores the recovered heat, and a fluid supply controller that, from immediately after a vehicle is started, releases heat stored by the heat storage section to the fluid, and selectively supplies the fluid to a predetermined plurality of warm-up targets.
Abstract: A heat-resistant member includes a base member composed of an isotropic graphite and a film with a single layer or multiple layers formed on the entire or partial surface of the base member. The film includes a dense WC layer with a single layer or multiple layers, and the dense WC layer includes WC as a main component and has a porosity of less than 3%. The film may further include a porous WC layer with a single layer or multiple layers formed on an entire or partial surface of the dense WC layer. In this case, the porous WC layer preferably includes WC as a main component and has a porosity larger than that of the dense WC layer.
Abstract: A power supply device includes battery circuit modules each having a battery, a first switching element S1 connected in parallel to the battery, and a second switching element S2 connected in series to the battery between the battery and the first switching element S1, the second switching element S2 being turned off when the first switching element S1 is turned on, a battery circuit module group in which the battery circuit modules are connected in series, and a control circuit for outputting, at intervals of a certain time, a gate signal for turning on and off the first switching element S1 and the second switching element S2 to the battery circuit modules.
Abstract: A shift mechanism switches power transmission paths among a first transmission shaft, a second transmission shaft, and a third transmission shaft that are concentrically arranged on a rotational axis. The shift mechanism has a drive drum that is provided so as to be coaxial with the rotational axis and pivotable about the rotational axis, and a first driven drum and a second driven drum that are arranged on the rotational axis so as to be concentric with the drive drum and move along the rotational axis as the drive drum pivots. As the first driven drum moves, a first shift sleeve advances and retreats, and the first transmission shaft and the second transmission shaft are connected and disconnected. In addition, as the second driven drum moves, a second shift sleeve advances and retreats, and the second transmission shaft and the third transmission shaft are connected and disconnected.
Type:
Grant
Filed:
April 16, 2019
Date of Patent:
May 18, 2021
Assignees:
KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
Abstract: The electrolysis system of the present invention has a water electrolysis unit equipped with a water electrolysis cell using a solid polymer electrolyte membrane as its diaphragm, a DC power source for supplying the water electrolysis cell with a DC current, and a mitigation unit for mitigating, when a counter electromotive force or abrupt potential fluctuation occurs in the water electrolysis cell, the counter electromotive force or the potential fluctuation. The mitigation unit is preferably a coil+diode (A) connected in parallel between the DC power source and the water electrolysis cell or a diode (B) connected between the DC power source and the water electrolysis cell. The electrolysis system is preferably equipped further with a lowering rate controller for controlling the lowering rate of a current supplied from the DC power source to the water electrolysis cell.
Abstract: A carbon material precursor includes an acrylamide/vinyl cyanide-based copolymer which contains 50 to 99.9 mol % of acrylamide-based monomer unit and 0.1 to 50 mol % of vinyl cyanide-based monomer unit; a carbon material precursor composition includes the above-described carbon material precursor and at least one additional component selected from the group consisting of acids and salts thereof; and a method for producing a carbon material, includes subjecting the above-described carbon material precursor or the above-described carbon material precursor composition to thermal-stabilization treatment as necessary, followed by carbonization treatment.
Abstract: A semiconductor device includes: a substrate; and an n-type layer including a nitride semiconductor formed on the surface of the substrate. In the n-type layer, the concentration of donor impurities (excluding O) is 1×1015 cm?3 or more and 1×1020 cm?3 or less, the concentration of C impurities is 1×1016 cm?3 or less, the concentration of O impurities is 1×1016 cm?3 or less, the concentration of Ca impurities is 1×1016 cm?3 or less, and the sum total of the concentrations of the C impurities, the O impurities, and the Ca impurities is lower than the concentration of the donor impurities. Such a semiconductor device can be fabricated by using a halogen-free vapor phase epitaxy (HF-VPE) device.
Abstract: An electrode set for chemical reaction includes a substrate, and electrodes for reduction and oxidation reactions alternately arranged on the same surface of the substrate.