Abstract: A system and method are disclosed for converting heat into a usable form of energy, where the system and method are designed to utilize at least two separate heat sources simultaneously, where one heat source stream has a higher initial temperature and a second heat source stream has a lower initial temperature, which is transferred to and a multi-component working fluid from which thermal energy is extracted.
Abstract: Embodiments of the present invention disclose systems and methods for the efficient conversion of solar energy into a useable form of energy using a solar collector subsystem and a heat conversion subsystem. The systems and methods transfer solar energy directly to an intermediate solution and a working solution and indirectly to and between a basic rich solution, a condensing solution, a lean solution and a rich vapor solution. The systems and methods also include condensing the basic rich solution using an external coolant. The systems and methods support a closed thermodynamic cycle.
Abstract: Solar trough apparatuses are disclosed, where a heat transfer fluid conduit remains fixed in a focal of a solar trough as the solar trough tracks the sun. The support structures can be ring or arcuate structures, where rotation is about their central axis and the trough is support in them so that the focal zone is coincident with the axis of rotation and the conduit is situated in the focal zone eliminating the need for articulated or flexible conduit.
Abstract: Solar-thermal energy storage systems and methods are disclosed including a heat transfer fluid storage and distribution subsystem (HTFSDSS) including at least N storage tanks, control valves, and transfer lines, a solar heating or collector subsystem (SHSS) connected to the HTFSDSS via the transfer lines, and a heat conversion or power subsystem (HCSS) connected to the HTFSDSS via the transfer lines, where at least one of the N tanks is empty at the start of an operational cycle and heat transfer fluid is forwarded from filled tanks in the HTFSDSS through the other subsystem and into the empty tank or tanks.
Abstract: Power generation systems and methods are disclosed for use with medium to high temperature heat source stream, gaseous or liquid, where the systems and methods permit efficient energy extraction for medium and small scale power plants.
Abstract: A system and method are disclosed for the combined production of power and heat from an external heat source stream, where the system utilizes four basic stream of different compositions to co-generate power and to heat an external heat absorber stream from an external heat source stream.
Abstract: A direct heat exchange method and apparatus for recovering heat from a liquid heat source is disclosed, where the method includes contacting a liquid heat source stream with a multi-component hydrocarbon fluid, where the hydrocarbon fluid compositions has a linear or substantially linear temperature versus enthalpy relationship over the temperature range of the direct heat exchange apparatus.
Abstract: System and method is disclosed to increase the efficient of internal combustion engines using to generate electric power, where the system and method converts a portion of thermal energy produced in the combustion process to a usable form of energy.
Abstract: The present invention discloses systems and methods for converting heat from external heat source streams or from solar energy derived from a solar collector subsystem. The systems and methods comprise a thermodynamic cycle including three internal subcycles. Two of the subcycles combine to power a higher pressures turbine and third or main cycle powers a lower pressure turbine. One of the cycles increases the flow rate of a richer working solution stream powering the lower pressure turbine. Another one of the cycles is a leaner working solution cycle, which provides increased flow rate for leaner working solution stream going into the higher pressure turbine.
Abstract: Power generation systems and methods are disclosed for use with medium to high temperature heat source stream, gaseous or liquid, where the systems and methods permit efficient energy extraction for medium and small scale power plants.
Abstract: Power generation systems and methods are disclosed for use with medium to high temperature heat source stream, gaseous or liquid, where the systems and methods permit efficient energy extraction for medium and small scale power plants.
Abstract: An apparatus, system and method for transferring heat from a hot flue gas stream from a cement plant including large particles and dust to a working fluid of a power plant via a high temperature heat transfer fluid without exposing all or most of the equipment to the erosive force of the particles and dust is disclosed where the apparatus includes a cement plant, a particle separation and heat transfer system and a power plant
Abstract: A condensation system is disclosed where a multi-component fluid is condensed to form a condensate, a portion of which is sub-cooled and mixed with non-condensable vapor in the system to reduce the accumulation of non-condensable vapor and to improve the stability and efficiency of the condensation system.
Abstract: A cascade power system and a method are disclosed for using a high temperature flue gas stream to directly or indirectly vaporize a lean and rich stream derived from an incoming, multi-component, working fluid stream, extract energy from these streams, condensing a spent stream and repeating the vaporization, extraction and condensation cycle.
Abstract: A cascade power system and a method are disclosed for using a high temperature flue gas stream to directly or indirectly vaporize a lean and rich stream derived from an incoming, multi-component, working fluid stream, extract energy from these streams, condensing a spent stream and repeating the vaporization, extraction and condensation cycle.
Abstract: A system and method is disclosed to increase the efficient of internal combustion engines where the system and method converts a portion of thermal energy produced in the combustion process to a usable form of energy. If the engines are used in power generation, then the system and method increases the power output of the engine significantly. If the engines are used in traditional mechanical operations such as ships, then the system and method operates to increase mechanical power output or to increase co-produced electrical energy output.
Abstract: A cascade power system and a method are disclosed for using a high temperature flue gas stream to directly or indirectly vaporize a lean and rich stream derived from an incoming, multi-component, working fluid stream, extract energy from these streams, condensing a spent stream and repeating the vaporization, extraction and condensation cycle.
Abstract: An improved combustion method and corresponding apparatus is disclosed, where the method includes oxidizing a fuel in a combustion chamber with an oxidizing stream including an air stream and a first recycled flue gas stream and mixing a produced hot flue gas stream with a second recycled flue gas stream to form reduced temperature flue gas stream which can be used directly in a power generator or to heat a reactor. The method and apparatus allow flow rates of the streams to be adjusted so that temperatures in the combustion chamber and in the heat transfer unit or units of the power generator or reactor can be kept below temperature that would thermally damage the combustion chamber, heat transfer unit or units or the reactors.
Abstract: A process and system for condensing a multi-component fluid is disclosed, where the process and system are designed to provide a substantial increase in a heat transfer coefficient during condensation of multi-component fluids resulting in a drastic reduction in size and cost of heat exchangers need to condense such fluids. The system and method includes a plurality of heat exchangers and at least one scrubber and splitters and mixers supporting streams that allow a mixed stream to be supplied to each heat exchange unit having parameters designed to increase, optimize or maximize the heat transfer coefficient in each heat exchanger.
Abstract: A new method, system and apparatus for power system utilizing wide temperature range heat sources and a multi-component working fluid is disclosed including a heat recovery vapor generator (HRVG) subsystem, a multi-stage energy conversion or turbine (T) subsystem and a condensation thermal compression subsystem (CTCSS) and where one or more of the streams exiting the stages of the turbine subsystem T are sent back through different portions of the HRVG to be warmed and/or cooled before being forwarded to the next stage of the turbine subsystem T. The turbine subsystem T includes at least a high pressure turbine or turbine stage (HPT) and a low pressure turbine or turbine stage (LPT) and preferably, an intermediate pressure turbine or turbine stage (IPT).