Patents Assigned to Karbon CCS Ltd
-
Publication number: 20250135394Abstract: A carbon capture system includes a CO2-containing flue gas from any CO2 producing source connected to a first flue gas compressor of a gas turbine with a corresponding first turbine expander and a generator driven by said gas turbine. The gas turbine includes a first burner and a second burner, wherein the second burner utilizes at least a non-carbon fuel such as Hydrogen (H2) or Ammonia (NH3), so as for increasing a temperature of a first relatively hot compressed CO2-lean flue gas to a second relatively hotter compressed CO2-lean flue gas for being fed into said first expander.Type: ApplicationFiled: December 27, 2024Publication date: May 1, 2025Applicant: KARBON CCS LTD.Inventors: Henrik FLEISCHER, Knut Erik BØRSETH
-
Patent number: 12145100Abstract: A ship with a flue gas carbon dioxide capture and storage plant has a main engine such as a slow running diesel engine providing flue gas. The flue gas is led via a flue gas heat exchanger with a thermal fluid exit to a re-boiler and arranged for cooling said flue gas. Further cooled flue gas is led into a turbine compressor compressing it up to a compressed flue gas. A combustion chamber is provided with a fuel feed and a pre-mix gas burner for afterburning said compressed flue gas which also burns remaining methane from the diesel engine, resulting in hot afterburned compressed flue gas enriched in CO2. The CO2-absorber (20) leading said CO2-enriched absorber solution to a CO2-stripper (21), operating at e.g. 1 Bar and exporting CO2 to a CO2-compressor (26) to a CO2-export line (28) to onboard CO2 pressure tanks.Type: GrantFiled: January 12, 2022Date of Patent: November 19, 2024Assignee: KARBON CCS LTDInventors: Henrik Fleischer, Knut Erik Børseth
-
Patent number: 12085229Abstract: A four-lobe cargo tank for transporting and/or storage of liquefied gases includes four main lobes, each with a cylinder sector outer shell and main lobe axis. The four main lobes are arranged with the four main lobe axis axial-parallel with and about a common main central axis, such that the four main lobes are joined by four web frames with four corresponding diagonally arranged perforated bulkheads directed outwardly from the main central axis. The tank includes a first and a second end cover. Each end cover includes four quarter spherical shell portions, each forming an end portion of the cylinder sector outer shell. The quarter spherical shell portions of the first and second end covers, respectively, are joined and closing toward the main central axis by a first and a second four diagonally arranged cylindrical 45-degree cut pipe portions, which are each arranged with its axis transverse to the main axis.Type: GrantFiled: November 9, 2022Date of Patent: September 10, 2024Assignee: KARBON CCS LTD.Inventors: Henrik Fleischer, Knut Erik Børseth, Nils Christian Høy-Petersen
-
Publication number: 20240151353Abstract: A four-lobe cargo tank for transporting and/or storage of liquefied gases includes four main lobes, each with a cylinder sector outer shell and main lobe axis. The four main lobes are arranged with the four main lobe axis axial-parallel with and about a common main central axis, such that the four main lobes are joined by four web frames with four corresponding diagonally arranged perforated bulkheads directed outwardly from the main central axis. The tank includes a first and a second end cover. Each end cover includes four quarter spherical shell portions, each forming an end portion of the cylinder sector outer shell. The quarter spherical shell portions of the first and second end covers, respectively, are joined and closing toward the main central axis by a first and a second four diagonally arranged cylindrical 45-degree cut pipe portions, which are each arranged with its axis transverse to the main axis.Type: ApplicationFiled: November 9, 2022Publication date: May 9, 2024Applicant: Karbon CCS ltd.Inventors: Henrik Fleischer, Knut Erik Børseth, Nils Christian Høy-Petersen
-
Publication number: 20240009616Abstract: A carbon capture system includes a CO2-containing flue gas from any CO2 producing source connected to a first flue gas compressor of a gas turbine with a corresponding first turbine expander and a generator driven by said gas turbine. The gas turbine includes a first burner and a second burner, wherein the second burner utilizes at least a non-carbon fuel such as Hydrogen (H2) or Ammonia (NH3), so as for increasing a temperature of a first relatively hot compressed CO2-lean flue gas to a second relatively hotter compressed CO2-lean flue gas for being fed into said first expander.Type: ApplicationFiled: July 11, 2022Publication date: January 11, 2024Applicant: KARBON CCS LTD.Inventors: Henrik Fleischer, Knut Erik Børseth
-
Patent number: 11701613Abstract: A method and a plant for capturing CO2 from an incoming flue gas. The flue gas can be exhaust gas from coal and gas fired power plants, cement factories or refineries. The incoming exhaust gas is cooled, mixed with air and compressed, and thereafter introduced into a combustion chamber together with gas and/or liquid fuel. Part of the combustion is achieved by separate burners with cooling/combustion air feed with a volume equal to the volume of CO2 captured. Said burners will elevate the temperature in the combustion chamber allowing combustion of exhaust gas with low oxygen content. CO2 is captured at high partial pressure before expansion by the gas turbine to produce power and generate steam in the heat recovery unit. The gas turbine will operate with high efficiency close to design parameters with respect to inlet temperature, pressure and flow.Type: GrantFiled: March 9, 2018Date of Patent: July 18, 2023Assignee: KARBON CCS LTDInventors: Knut Børseth, Henrik Fleischer
-
Publication number: 20210060478Abstract: A method and a plant for capturing CO2 from an incoming flue gas. The flue gas can be exhaust gas from coal and gas fired power plants, cement factories or refineries. The incoming exhaust gas is cooled, mixed with air and compressed, and thereafter introduced into a combustion chamber together with gas and/or liquid fuel. Part of the combustion is achieved by separate burners with cooling/combustion air feed with a volume equal to the volume of CO2 captured. Said burners will elevate the temperature in the combustion chamber allowing combustion of exhaust gas with low oxygen content. CO2 is captured at high partial pressure before expansion by the gas turbine to produce power and generate steam in the heat recovery unit. The gas turbine will operate with high efficiency close to design parameters with respect to inlet temperature, pressure and flow.Type: ApplicationFiled: March 9, 2018Publication date: March 4, 2021Applicant: Karbon CCS LtdInventors: Knut BØRSETH, Henrik FLEISCHER