Patents Assigned to Katana Technologies GmbH
  • Patent number: 8313479
    Abstract: The invention involves a device and a procedure for refractive laser surgery on a target object. With the aid of a laser beam source, an fs-impulse laser beam is generated. A second laser beam source generates a UV laser beam. A shared scanner device utilises the fs-impulse laser beam and the UV laser beam for the scanning of the target object.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: November 20, 2012
    Assignee: Katana Technologies GmbH
    Inventors: Matthias Lenzner, Georg Korn, Olaf Kittelmann
  • Patent number: 7721743
    Abstract: The invention involves a device and a procedure for refractive laser surgery on a target object. With the aid of a laser beam source, an fs-impulse laser beam is generated. A second laser beam source generates a UV laser beam. A shared scanner device utilizes the fs-impulse laser beam and the UV laser beam for the scanning of the target object.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: May 25, 2010
    Assignee: Katana Technologies GmbH
    Inventors: Matthias Lenzner, Georg Korn, Olaf Kittelmann
  • Patent number: 6610049
    Abstract: A surgical laser system is described for customized ablation with a power stabilized, near diffraction-limited laser beam. This surgical laser beam has a pulse repetition rate of from near 500 Hz to about 1 kHz and has a relatively small spot size at both positions of the cornea and the scanner. Such a surgical laser beam enables the use of fast scanner and the implement of fast eye tracker. One embodiment of such a surgical laser source is a CW pumped solid state laser employing non-linear wavelength conversion.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: August 26, 2003
    Assignee: Katana Technologies GmbH
    Inventors: Ming Lai, Meijuan Yuan
  • Publication number: 20010021845
    Abstract: A fast and smooth scanning is described for achieving uniform ablated surface without relying on any synchronization between the laser pulses and the scanner mirror positions. The scanning takes a series of close loops and the scanning speed on each loop is fine-tuned according to the perimeter of the loop. A uniform and close-packed pulse disposition along each loop can be achieved by multiple successive scans along the loop, while the consecutive pulses of a scan can be well separated. The scanning pattern is such designed that the energy distribution is uniform for every layer and the smoothness of the ablated surface remains substantially unchanged as the number of the layer increases.
    Type: Application
    Filed: May 16, 2001
    Publication date: September 13, 2001
    Applicant: Katana Technologies GmbH, a German Corporation
    Inventor: Ming Lai