Patents Assigned to Kateeva, Inc.
  • Patent number: 11034176
    Abstract: The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 15, 2021
    Assignee: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson
  • Publication number: 20210167339
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 3, 2021
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Patent number: 11004835
    Abstract: Light-emitting sub-pixels and pixels for micro-light-emitting diode-based displays are provided. Also provided are methods of fabricating individual sub-pixels, pixels, and arrays of the pixels. The sub-pixels include a double-layered film that includes a coupling layer disposed over a light-emitting diode and a light-emission layer disposed over the coupling layer.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: May 11, 2021
    Assignee: Kateeva, Inc.
    Inventor: Florian Pschenitzka
  • Patent number: 11006528
    Abstract: A method of making a device patterned with one or more electrically conductive features includes depositing a conductive material layer over an electrically insulating surface of a substrate, depositing an anti-corrosive material layer over the conductive material layer, and depositing an etch-resist material layer over the anti-corrosive material layer. The etch-resist material layer may be deposited over the anti-corrosive material layer, and the anti-corrosive material layer forming a bi-component etch mask in a pattern resulting in covered portions of the conductive material layer and exposed portions of the conductive material layer, the covered portions being positioned at locations corresponding to one or more conductive features of the device. A wet-etch process is performed to remove the exposed portions of the conductive material layer from the electrically insulating substrate, and the bi-component etch mask is removed to expose the remaining conductive material.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: May 11, 2021
    Assignee: KATEEVA, INC.
    Inventors: Nava Shpaisman, Moshe Frenkel
  • Patent number: 10985217
    Abstract: A method of manufacturing an organic light-emitting diode display comprising a substrate having a well defined by a confinement structure, the well containing a first electrode and a second electrode spaced from each other, wherein the method may comprise depositing a light-emissive material in the well via ink-jet printing, thereby forming a substantially continuous light-emissive material layer in the well from the deposited light-emissive material, the light-emissive material layer spanning and contained within boundaries of the well, wherein a surface of the light-emissive material layer that faces away from the substrate has a non-planar topography. The method may further comprise positioning a common electrode over the light-emissive material layer.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 20, 2021
    Assignee: KATEEVA, INC.
    Inventor: Conor F. Madigan
  • Publication number: 20210108811
    Abstract: The present teachings relate to various embodiments of a hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of a hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 15, 2021
    Applicant: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson
  • Publication number: 20210086535
    Abstract: The present teachings disclose various embodiments of a printing system for printing substrate, in which the printing system can be housed in a gas enclosure, where the environment within the enclosure can be maintained as a controlled printing environment. A controlled environment of the present teachings can include control of the type of gas environment within the gas enclosure, the size and level particulate matter within the enclosure, control of the temperature within the enclosure and control of lighting. Various embodiments of a printing system of the present teachings can include a Y-axis motion system and a Z-axis moving plate that are configured to substantially decrease excess thermal load within the enclosure by, for example, eliminating or substantially minimizing the use of conventional electric motors.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 25, 2021
    Applicant: Kateeva, Inc.
    Inventors: Robert B. Lowrance, Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Aleksey Khrustalev, Karl Mathia, Shandon Alderson
  • Patent number: 10950826
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: March 16, 2021
    Assignee: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Publication number: 20210040595
    Abstract: The disclosure relates to a method and apparatus for preventing oxidation or contamination during a circuit printing operation. The circuit printing operation can be directed to OLED-type printing. In an exemplary embodiment, the printing process is conducted at a load-locked printer housing having one or more of chambers. Each chamber is partitioned from the other chambers by physical gates or fluidic curtains. A controller coordinates transportation of a substrate through the system and purges the system by timely opening appropriate gates. The controller may also control the printing operation by energizing the print-head at a time when the substrate is positioned substantially thereunder.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Applicant: Kateeva, Inc.
    Inventors: Sass Somekh, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 10900678
    Abstract: The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: January 26, 2021
    Assignee: KATEEVA, INC.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson
  • Publication number: 20210010136
    Abstract: A deposition device is described. The deposition device has a substrate support and a laser imaging system disposed to image a portion of a substrate positioned on the substrate support. The laser imaging system comprises a laser source and an imaging unit, and is coupled to a deposition assembly disposed across the substrate support.
    Type: Application
    Filed: June 29, 2020
    Publication date: January 14, 2021
    Applicant: Kateeva, Inc.
    Inventors: Karl Mathia, Jesse Lu, Jerry Chang, Matt Audet, Stephen Baca, Vadim Mashevsky, David C. Darrow
  • Publication number: 20210007225
    Abstract: A method of forming a metallic pattern on a substrate is provided. The method includes applying onto a metallic surface, a chemically surface-activating solution having an activating agent that chemically activates the metallic surface; non-impact printing an etch-resist ink on the activated surface to produce an etch resist mask according to a predetermined pattern, wherein at least one ink component within the etch-resist ink undergoes a chemical reaction with the activated metallic surface to immobilize droplets of the etch-resist ink when hitting the activated surface; performing an etching process to remove unmasked metallic portions that are not covered with the etch resist mask; and removing the etch-resist mask.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 7, 2021
    Applicant: Kateeva, Inc.
    Inventors: Nava Shpaisman, Moshe Frenkel
  • Patent number: 10886504
    Abstract: This disclosure provides techniques for assessing quality of a deposited film layer of an organic light emitting diode (“OLED”) device. An image is captured and filtered to identify a deposited layer that is to be analyzed. Image data representing this layer can be optionally converted to brightness (grayscale) data. A gradient function is then applied to emphasize discontinuities in the deposited layer. Discontinuities are then compared to one or more thresholds and used to ascertain quality of the deposited layer, with optional remedial measures then being applied. The disclosed techniques can be applied in situ, to quickly identify potential defects such as delamination before ensuing manufacturing steps are applied. In optional embodiments, remedial measures can be taken dependent on whether defects are determined to exist.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 5, 2021
    Assignee: Kateeva, Inc.
    Inventor: Christopher Cocca
  • Patent number: 10875329
    Abstract: The present teachings disclose various embodiments of a printing system for printing a substrate, in which the printing system can be housed in a gas enclosure, where the environment within the enclosure can be maintained as a controlled printing environment. A controlled environment of the present teachings can include control of the type of gas environment within the gas enclosure, the size and level particulate matter within the enclosure, control of the temperature within the enclosure and control of lighting. Various embodiments of a printing system of the present teachings can include a Y-axis motion system and a Z-axis moving plate that are configured to substantially decrease excess thermal load within the enclosure by, for example, eliminating or substantially minimizing the use of conventional electric motors.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: December 29, 2020
    Assignee: Kateeva, Inc.
    Inventors: Robert B. Lowrance, Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Aleksey Khrustalev, Karl Mathia, Shandon Alderson
  • Publication number: 20200396842
    Abstract: Methods and composition sets for forming etch-resist masks on a metallic surface are provided. The method may include depositing a first aqueous composition comprising a first reactive component onto a metallic layer of a substrate; depositing a second aqueous composition comprising a second reactive component on selected portions of the deposited first aqueous composition to form, from a chemical reaction between the first reactive component and the second reactive component, a bi-component material mask in a pattern to protect selected regions of the metallic layer; and depositing an etch solution to remove the metallic layer in regions not protected by the bi-component material mask.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 17, 2020
    Applicant: Kateeva, Inc.
    Inventors: Moshe FRENKEL, Nava SHPAISMAN
  • Publication number: 20200381675
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Application
    Filed: August 21, 2020
    Publication date: December 3, 2020
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Publication number: 20200376830
    Abstract: An inkjet printer is disclosed that has a substrate support; a calibration module disposed adjacent to the substrate support and comprising a stage member; and a print assembly disposed across the substrate support, the print assembly comprising a printhead and a calibration imaging device positionable to face the stage member.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 3, 2020
    Applicant: Kateeva, Inc.
    Inventors: Eashwer Chandra Vidhya Sagar Kollata, Christopher Buchner, Alexander Sou-Kang Ko, Senn Van Ly, Matthew Burton Sheffield
  • Patent number: 10851450
    Abstract: The disclosure relates to a method and apparatus for preventing oxidation or contamination during a circuit printing operation. The circuit printing operation can be directed to OLED-type printing. In an exemplary embodiment, the printing process is conducted at a load-locked printer housing having one or more of chambers. Each chamber is partitioned from the other chambers by physical gates or fluidic curtains. A controller coordinates transportation of a substrate through the system and purges the system by timely opening appropriate gates. The controller may also control the printing operation by energizing the print-head at a time when the substrate is positioned substantially thereunder.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: December 1, 2020
    Assignee: Kateeva, Inc.
    Inventors: Sass Somekh, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 10847756
    Abstract: The present teachings relate to various embodiments of ink compositions, which once printed and cured on a substrate form a continuous composite film layer that includes a first pattern of polymeric areas having a first refractive index (RI) interspersed within a second pattern of polymeric areas having an RI that is higher in comparison to the RI of the first pattern of polymeric areas. Various embodiments of composite thin films so formed on a substrate can be tuned so as to enhance light outcoupling or extraction for various light-emitting devices of the present teachings, such as, but not limited by, an OLED display or lighting device.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: November 24, 2020
    Assignee: KATEEVA, INC.
    Inventor: Florian Pschenitzka
  • Patent number: 10811324
    Abstract: An ink jet process is used to deposit a material layer to a desired thickness. Layout data is converted to per-cell grayscale values, each representing ink volume to be locally delivered. The grayscale values are used to generate a halftone pattern to deliver variable ink volume (and thickness) to the substrate. The halftoning provides for a relatively continuous layer (e.g., without unintended gaps or holes) while providing for variable volume and, thus, contributes to variable ink/material buildup to achieve desired thickness. The ink is jetted as liquid or aerosol that suspends material used to form the material layer, for example, an organic material used to form an encapsulation layer for a flat panel device. The deposited layer is then cured or otherwise finished to complete the process.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: October 20, 2020
    Assignee: Kateeva, Inc.
    Inventors: Eliyahu Vronsky, Nahid Harjee