Abstract: The present invention relates to: an electrolytic copper foil having high dimensional stability and texture stability in a high temperature environment of a process for manufacturing an Li secondary battery; and a manufacturing method therefor. The electrolytic copper foil of the present invention has a thermal expansion coefficient of 17.1-22 ?m/(m·° C.) in a temperature region of 30-190° C., has a variation of full width at half maximum of the (220) plane of 0.81-1.19 according to heat treatment for 30 minutes at 190° C., and has a weight deviation of 5% or less in the transverse direction.
Type:
Grant
Filed:
January 25, 2019
Date of Patent:
May 31, 2022
Assignee:
KCF TECHNOLOGIES CO., LTD.
Inventors:
Seung Min Kim, Joong Kyu An, Shan Hua Jin
Abstract: An electric copper foil is applied as a current collector for a lithium secondary battery, and in a peak curve with respect to a (111) plane appearing on an X-ray diffraction analysis graph (a graph in which an X-axis variable is a diffraction angle 2? and a Y-axis variable is an intensity of a diffracted X-ray) in a state where the electric copper foil is not thermally treated, the electric copper foil has a full width at half maximum (FWHM) of 0.08 or above and 0.15 or below.
Abstract: An easily handleable electrolytic copper foil securing a highly durable secondary battery, an electrode including same, a secondary battery including same, and a method of manufacturing same. The electrolytic copper foil including first and second surfaces includes a copper layer including a matte surface facing the first surface and a shiny surface facing the second surface, a first protective layer formed on the matte surface of the copper layer, and a second protective layer formed on the shiny surface of the copper layer. A coefficient of thermal expansion of the electrolyte copper foil measured using thermomechanical analyzer while heating the electrolytic copper foil from 30 to 190° C. at 5° C./min ranges from 16 to 22 ?m/(m·° C.), tensile strength of the electrolytic copper foil measured after heat treatment at 190° C., ranges from 21 to 36 kgf/mm2, and weight deviation of the electrolytic copper foil is 5% or less.
Abstract: Disclosed is a copper foil including a copper layer and having a tensile strength of 29 to 65 kgf/mm2, a mean width of roughness profile elements (Rsm) of 18 to 148 ?m and a texture coefficient bias [TCB(220)] of 0.52 or less.
Abstract: Provided is a copper foil. The copper foil includes a copper layer and a protective layer disposed on the copper layer, wherein a surface of the protective layer has a maximum height roughness (Rmax) of 0.6 ?m to 3.5 ?m, a peak density (PD) of 5 to 110, and an oxygen atomic amount of 22 at % (atomic %) to 67 at %.
Abstract: Disclosed is a copper foil including a copper layer having a matte surface and a shiny surface, wherein the copper foil has a first surface of a direction of the matte surface of the copper layer and a second surface of a direction of the shiny surface of the copper layer, wherein a dynamic friction coefficient of the first surface is designated by ?k1 and a dynamic friction coefficient of the second surface is designated by ?k2. A ratio of three-dimensional surface area to two-dimensional surface area of the first surface is designated by Fs1, a ratio of three-dimensional surface area to two-dimensional surface area of the second surface is designated by Fs2.
Type:
Grant
Filed:
August 27, 2018
Date of Patent:
May 19, 2020
Assignee:
KCF TECHNOLOGIES CO., LTD.
Inventors:
Young Wook Chae, Young Hyun Kim, Shan Hua Jin
Abstract: An electrolytic copper foil capable of securing a secondary battery having a high capacity retention rate, an electrode including the same, a secondary battery including the same, and a method of manufacturing the same. The electrolytic copper foil, which includes a first surface and a second surface opposite to the first surface, includes a copper layer including a matte surface facing the first surface and a shiny surface facing the second surface, and a first protective layer on the matte surface of the copper layer, wherein the first protective layer includes chromium (Cr) and the first surface of the electrolytic copper foil has an adhesion factor of 1.5 to 16.3.
Abstract: An electrolytic copper foil capable of improving a capacity retention rate of a secondary battery, an electrode including the same, a secondary battery including the same, and a method of manufacturing the same. The electrolytic copper foil, which includes a first surface and a second surface opposite the first surface, includes a copper layer including a matte surface facing the first surface and a shiny surface facing the second surface, and a first protective layer on the matte surface of the copper layer, wherein the first surface has a peak density (PD) of 3 to 110, a texture coefficient [TC(220)] of a (220) plane of 1.32 or less, and a surface roughness (Rz) of 0.5 to 2.7 ?m.
Abstract: An electrolytic copper foil for a lithium secondary battery, which is applied as a negative electrode current collector of a lithium secondary battery, wherein when a correlation between a thermal treatment temperature of the electrolytic copper foil for a lithium secondary battery, which corresponds to a variable x, and an elongation increment ratio of the electrolytic copper foil for a lithium secondary battery, which corresponds to a variable y, is expressed as y=ax+b (100?x?200) on an x-y two-dimensional graph, the “a” value is in the range of 0.0009 to 0.0610.
Type:
Grant
Filed:
May 11, 2016
Date of Patent:
January 7, 2020
Assignee:
KCF TECHNOLOGIES CO., LTD.
Inventors:
Seung-Min Kim, Soo-Yeol Kim, Dae-Young Kim, Jeong-Gil Lee
Abstract: An electrolytic copper foil, a current collector including the same, an electrode including the same, a secondary battery including the same and a method for manufacturing the same which can secure secondary batteries with high capacity maintenance. The electrolytic copper foil includes a first surface and a second surface opposite to the first surface, wherein each of the first and second surfaces has a peak count roughness Rpc of 10 to 100.
Abstract: An electrolytic copper foil for a lithium secondary battery, which is applied as a negative electrode current collector of a lithium secondary battery, wherein after a thermal treatment at 300° C. for 30 minutes, the electrolytic copper foil for a lithium secondary battery has an elongation of 5% to 30%.
Type:
Grant
Filed:
May 11, 2016
Date of Patent:
September 17, 2019
Assignee:
KCF TECHNOLOGIES CO., LTD.
Inventors:
Seung-Min Kim, Soo-Yeol Kim, Dae-Young Kim, Jeong-Gil Lee
Abstract: A high strength electrolytic copper foil preventing generation of folds, wrinkles, pleats, and breaks during a roll-to-roll (RTR) process, a method of manufacturing the same, and an electrode and a secondary battery which allow high productivity to be secured by being manufactured with such an electrolytic copper foil. The electrolytic copper foil includes a copper film including 99 weight % or more of copper and a protective layer on the copper film, wherein the electrolytic copper foil has a tensile strength of 45 to 65 kgf/mm2.
Type:
Grant
Filed:
July 27, 2017
Date of Patent:
September 3, 2019
Assignee:
KCF TECHNOLOGIES CO., LTD.
Inventors:
Seung Min Kim, Jeong Gil Lee, Shan Hua Jin
Abstract: A copper foil for a current collector of a lithium secondary battery has a crystalline structure, in which a ratio of the sum of texture coefficients of a (111) surface and a (200) surface to the total sum of texture coefficients of the (111), (200) and (220) surfaces is 60 to 85%, a ratio of the texture coefficient of the (111) surface to the total sum of texture coefficients of the (111), (200) and (220) is 18 to 38%, a ratio of the texture coefficient of the (200) surface thereto is 28 to 62%, and a ratio of the texture coefficient of the (220) surface thereto is 15 to 40%. The copper foil has surface roughness (Rz-JIS) of 2 mum or less, weight deviation of 3% or less, tensile strength of 30 to 40 kgf/mm2, elongation of 3 to 20%, and thickness of 1 to 35 mum.
Type:
Grant
Filed:
September 2, 2016
Date of Patent:
May 7, 2019
Assignee:
KCF TECHNOLOGIES CO., LTD.
Inventors:
Dae-Young Kim, Byoung-Kwang Lee, Seung-Jun Choi
Abstract: An electrolytic copper foil for a lithium secondary battery, wherein a curl indicator C of the electrolytic copper foil, which is defined as 1.21?R+1.12?Cr+0.01?G, is 0 or above and 4.0 or below, where ?R corresponds to an absolute value of a difference between roughness measured on a first surface of the electrolytic copper foil for a lithium secondary battery and roughness measured on a second surface thereof, ?Cr corresponds to an absolute value of a difference between a chrome-deposited amount of an anti-corrosion layer formed on the first surface of the electrolytic copper foil for a lithium secondary battery and a chrome-deposited amount of an anti-corrosion layer formed on the second surface, and ?G corresponds to an absolute value of a difference between glossiness measured on the first surface of the electrolytic copper foil for a lithium secondary battery and glossiness measured on the second surface.
Abstract: An electrolytic copper foil for a lithium secondary battery has yield strength of 30 kgf/mm2 to 60 kgf/mm2, a surface area ratio of 1 to 3, and a weight deviation of 3% or below.