Patents Assigned to KERACEL, INC.
  • Patent number: 11084220
    Abstract: An electrophotographic three dimensional printer system, including at least one electrophotographic (EP) printing module employing multi-material EP printing technology. The printer system may also include one or more additional printer modules employing different patterning and deposition technology, such as powder bed and jetted binder technology. The EP printing module may be used to create a 3D object derived from a composite toner material that may comprise an engineering material treated with a triboelectric material. The composite toner material may be designed to undergo a post printing treatment wherein a triboelectric material may be separated from an engineering material and the engineering material may undergo a change.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 10, 2021
    Assignee: KERACEL, INC.
    Inventor: Philip Eugene Rogren
  • Publication number: 20210175549
    Abstract: A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Applicant: KERACEL, INC.
    Inventor: Philip Eugene ROGREN
  • Publication number: 20210175548
    Abstract: A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Applicant: KERACEL, INC.
    Inventor: Philip Eugene ROGREN
  • Publication number: 20210154925
    Abstract: A three-dimensional, additive manufacturing system is disclosed. The first and second printer modules form sequences of first patterned single-layer objects and second patterned single-layer objects on the first and second carrier substrates, respectively. The patterned single-layer objects are assembled into a three-dimensional object on the assembly plate of the assembly station. A controller controls the sequences and patterns of the patterned single-layer objects formed at the printer modules, and a sequence of assembly of the first patterned single-layer objects and the second patterned single-layer objects into the three-dimensional object on the assembly plate. The first transfer module transfers the first patterned single-layer objects from the first carrier substrate to the assembly apparatus in a first transfer zone and the second transfer module transfers the second patterned single-layer objects from the second carrier substrate to the assembly apparatus in a second transfer zone.
    Type: Application
    Filed: January 5, 2021
    Publication date: May 27, 2021
    Applicant: KERACEL, INC.
    Inventor: Philip Eugene ROGREN
  • Patent number: 10974453
    Abstract: A three-dimensional, additive manufacturing system is disclosed. The first and second printer modules form sequences of first patterned single-layer objects and second patterned single-layer objects on the first and second carrier substrates, respectively. The patterned single-layer objects are assembled into a three-dimensional object on the assembly plate of the assembly station. A controller controls the sequences and patterns of the patterned single-layer objects formed at the printer modules, and a sequence of assembly of the first patterned single-layer objects and the second patterned single-layer objects into the three-dimensional object on the assembly plate. The first transfer module transfers the first patterned single-layer objects from the first carrier substrate to the assembly apparatus in a first transfer zone and the second transfer module transfers the second patterned single-layer objects from the second carrier substrate to the assembly apparatus in a second transfer zone.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: April 13, 2021
    Assignee: KERACEL, INC.
    Inventor: Philip Eugene Rogren
  • Patent number: 10971760
    Abstract: A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: April 6, 2021
    Assignee: KERACEL, INC.
    Inventor: Philip Eugene Rogren
  • Publication number: 20200303779
    Abstract: A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Applicant: KERACEL, INC.
    Inventor: Philip E. ROGREN
  • Publication number: 20200298477
    Abstract: A three-dimensional, additive manufacturing system is disclosed. The first and second printer modules form sequences of first patterned single-layer objects and second patterned single-layer objects on the first and second carrier substrates, respectively. The patterned single-layer objects are assembled into a three-dimensional object on the assembly plate of the assembly station. A controller controls the sequences and patterns of the patterned single-layer objects formed at the printer modules, and a sequence of assembly of the first patterned single-layer objects and the second patterned single-layer objects into the three-dimensional object on the assembly plate. The first transfer module transfers the first patterned single-layer objects from the first carrier substrate to the assembly apparatus in a first transfer zone and the second transfer module transfers the second patterned single-layer objects from the second carrier substrate to the assembly apparatus in a second transfer zone.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Applicant: KERACEL, INC.
    Inventor: Philip E. ROGREN
  • Publication number: 20200220209
    Abstract: A hybrid electrochemical cell is provided. The cell includes two or more electrochemical sub-cells. Each of the electrochemical sub-cells includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and a cathode receptive space. Any of the materials that are not required to support ion transfer may be replaced with another material engineered to be compatible with the chemistry, sintering properties and mechanical properties of the ceramic electrolyte material. The material is selected to be less expensive and less reactive with the environment than the ceramic electrolyte material.
    Type: Application
    Filed: December 18, 2019
    Publication date: July 9, 2020
    Applicant: KERACEL, INC.
    Inventor: Philip E. Rogren
  • Publication number: 20200171752
    Abstract: An electrophotographic three dimensional printer system, including at least one electrophotographic (EP) printing module employing multi-material EP printing technology. The printer system may also include one or more additional printer modules employing different patterning and deposition technology, such as powder bed and jetted binder technology. The EP printing module may be used to create a 3D object derived from a composite toner material that may comprise an engineering material treated with a triboelectric material. The composite toner material may be designed to undergo a post printing treatment wherein a triboelectric material may be separated from an engineering material and the engineering material may undergo a change.
    Type: Application
    Filed: November 22, 2019
    Publication date: June 4, 2020
    Applicant: KERACEL, INC.
    Inventor: Philip E. ROGREN
  • Publication number: 20200108553
    Abstract: A three-dimensional, additive manufacturing system is disclosed. The first and second printer modules form sequences of first patterned single-layer objects and second patterned single-layer objects on the first and second carrier substrates, respectively. The patterned single-layer objects are assembled into a three-dimensional object on the assembly plate of the assembly station. A controller controls the sequences and patterns of the patterned single-layer objects formed at the printer modules, and a sequence of assembly of the first patterned single-layer objects and the second patterned single-layer objects into the three-dimensional object on the assembly plate. The first transfer module transfers the first patterned single-layer objects from the first carrier substrate to the assembly apparatus in a first transfer zone and the second transfer module transfers the second patterned single-layer objects from the second carrier substrate to the assembly apparatus in a second transfer zone.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 9, 2020
    Applicant: KERACEL, INC.
    Inventor: Philip E. ROGREN
  • Publication number: 20200106135
    Abstract: A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Applicant: KERACEL, INC.
    Inventor: Philip E. ROGREN
  • Patent number: 10581111
    Abstract: A ceramic lithium battery sub-cell is provided. The ceramic lithium battery sub-cell includes a cathode region, an anode region, and a separator interconnecting the cathode region and the anode region. The separator is a ceramic electrolyte free of penetrating apertures. The ceramic lithium battery sub-cell also includes a cathode current collector positioned on a surface of the cathode region, and an anode current collector positioned on a surface of the anode region. The anode region is filled with a first porous electrolyte encapsulated by the separator, the anode current collector and at its periphery by a second porous electrolyte. The porosity of the second porous electrolyte is less than the porosity of the first porous electrolyte.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: March 3, 2020
    Assignee: KERACEL, INC.
    Inventor: Philip E. Rogren
  • Patent number: 10535900
    Abstract: A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: January 14, 2020
    Assignee: KERACEL, INC.
    Inventor: Philip E. Rogren
  • Publication number: 20190375159
    Abstract: A multi-material three-dimensional printing apparatus is provided. The provided apparatus includes two or more print stations. Each of the print stations includes a substrate, a transportation device, a dispersion device, a compaction device, a printing device, a fixing device, and a fluidized materials removal device. The apparatus also includes an assembly apparatus in communication with the two or more print stations via the transportation device. The apparatus also includes one or more transfer devices in communication with the assembly apparatus. The apparatus also includes a computing and controlling device configured to control the operations of the two or more print stations, the assembly apparatus and the one or more transfer devices.
    Type: Application
    Filed: October 22, 2018
    Publication date: December 12, 2019
    Applicant: KERACEL, INC.
    Inventors: Philip E. ROGREN, Morteza VATANI
  • Publication number: 20190237808
    Abstract: A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
    Type: Application
    Filed: January 30, 2019
    Publication date: August 1, 2019
    Applicant: KERACEL, INC.
    Inventor: Philip E. ROGREN
  • Publication number: 20180219251
    Abstract: A ceramic lithium battery sub-cell is provided. The ceramic lithium battery sub-cell includes a cathode region, an anode region, and a separator interconnecting the cathode region and the anode region. The separator is a ceramic electrolyte free of penetrating apertures. The ceramic lithium battery sub-cell also includes a cathode current collector positioned on a surface of the cathode region, and an anode current collector positioned on a surface of the anode region. The anode region is filled with a first porous electrolyte encapsulated by the separator, the anode current collector and at its periphery by a second porous electrolyte. The porosity of the second porous electrolyte is less than the porosity of the first porous electrolyte.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 2, 2018
    Applicant: KERACEL, INC.
    Inventor: Philip E. ROGREN