Patents Assigned to Khalifa University of Science and Technology
  • Patent number: 11318419
    Abstract: The present invention discloses a pressure converter system for sustainably forcing saline water through a semi-permeable membrane, comprising a hydraulic oil pump, a hydraulic oil cylinder comprising pressurized oil generated from the hydraulic oil pump, a sustainable energy source for powering the hydraulic oil pump, a saline water cylinder containing saline water, wherein the hydraulic oil cylinder and the saline water cylinder are connected using a piston and an electrical circuit for determining a direction of movement of the piston. This system may be developed to a stand-alone desalination facility comprising a ducted windmill that can harvest energy from a wide range of wind speeds, especially very low wind speeds. Because of the above, the present invention successfully converts mechanical energy to high pressure that is required to produce fresh water from saline water.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 3, 2022
    Assignee: Khalifa University of Science and Technology
    Inventors: Emad Alhseinat, Rawdha Alhammadi, Ohoud Alyammahi, Shatha AlMarri, Bashar El-Khasawneh
  • Patent number: 11311855
    Abstract: An example method of removing hydrogen sulfide from an input gas includes exposing an adsorbent material to an input gas to obtain an output gas. A concentration of hydrogen sulfide of the output gas is less than a concentration of hydrogen sulfide of the input gas. The adsorbent material includes copper oxide, magnesium oxide, and aluminum oxide. An atomic ratio of copper to magnesium to aluminum of the adsorbent material is X:Y:Z, where X is greater than or equal to 0.6 and less than or equal to 0.9, where Y is greater than or equal to 0 and less than or equal to 0.2, where Z is greater than or equal to 0 and less than or equal to 0.2, and where X+Y+Z is equal to 1.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: April 26, 2022
    Assignees: Regents of the University of Minnesota, Khalifa University of Science and Technology
    Inventors: Michael Tsapatsis, Veerappan Vaithilingam Balasubramanian, Yasser Al Wahedi, Saleh Al Hashimi
  • Patent number: 11286831
    Abstract: Described herein are catalytic converter substrates or cores based on triply periodic minimal surfaces (TPMS) geometries, along with methods of making and using the same.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: March 29, 2022
    Assignee: Khalifa University of Science and Technology
    Inventors: Rashid Kamel Abu Al-Rub, Oraib Gheath Al-Ketan
  • Patent number: 11256030
    Abstract: Structures for an optical power splitter and methods of forming a structure for an optical power splitter. A first waveguide core provides an input port, and second and third waveguide cores provide respective output ports. A non-linear waveguide taper is coupled to the first waveguide core at a first interface and is coupled to the second and third waveguide cores at a second interface. The non-linear waveguide taper includes a first curved section having a first width dimension that increases with increasing longitudinal distance from the first interface. The non-linear waveguide taper includes a second curved section having a second width dimension that increases with increasing longitudinal distance from the second interface. The first and second curved sections join at a longitudinal location at which the first and second width dimensions are each equal to a maximum width of the non-linear waveguide taper.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: February 22, 2022
    Assignees: GlobalFoundries U.S. Inc., Khalifa University of Science and Technology
    Inventors: Sujith Chandran, Yusheng Bian, Jaime Viegas, Ajey Poovannummoottil Jacob
  • Patent number: 11242249
    Abstract: Apparatuses and methods for preparing carbon nanostructure sheets are provided. The apparatuses may include a casting body including a substrate configured to move along a first direction, a slurry reservoir configured to contain a slurry, a dispenser connected to the slurry reservoir and configured to dispense the slurry onto a surface of the substrate and a doctoring member that extends in a second direction traversing the first direction and that is positioned above the surface of the substrate. The slurry may include carbon nanostructures, and/or one or more functional materials. The doctoring member may be spaced apart from the surface of the substrate by a predetermined distance.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: February 8, 2022
    Assignee: Khalifa University of Science and Technology
    Inventors: Rahmat Agung Susantyoko, Zainab Karam, Saif Almheiri, Ibrahim Husein Salim Mustafa
  • Patent number: 11239633
    Abstract: A driver circuit includes digital inputs, such as a first digital input and a second digital input. The digital inputs receive voltages at either a digital high-voltage or a digital low-voltage. The driver circuit has a clock input, an analog output, a first differential pair of transistors connected to the analog output, second differential pairs of transistors connected to the analog output, and voltage limiters connected to the clock input and the second differential pairs of transistors. The voltage limiters supply different voltages to the second differential pairs of transistors, which results in the second differential pairs of transistors providing analog signals to the analog output that are at different voltage steps at, and between, the digital high-voltage and the digital low-voltage.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: February 1, 2022
    Assignees: GlobalFoundries U.S. Inc., Khalifa University of Science and Technology
    Inventors: Ajey Poovannummoottil Jacob, Solomon M. Serunjogi, Mihai Adrian Tiberiu Sanduleanu
  • Patent number: 11224380
    Abstract: Systems and methods for monitoring an animal include receiving a plurality of biological parameters of the animal from a plurality of biological sensors, receiving location parameters of the animal from at least one location sensor, receiving weather parameters corresponding to ambient weather conditions proximate the animal from at least one ambient weather sensor, and comparing at least one of the parameters generated by the sensors with data representing at least one signature corresponding to the animal to determine if there is an irregular parameter. In response to an irregular reading/parameter being identified, then determining if the identified irregular parameter is related to a health condition of the animal and if the identified irregular parameter is not related to the health condition of the animal, then determining if the identified irregular parameter is related to an illegal activity.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: January 18, 2022
    Assignee: Khalifa University of Science and Technology
    Inventors: Saeed Alnofeli, David Khayati
  • Patent number: 11214487
    Abstract: Apparatuses for gasifying glycerol using solar energy, system including the apparatuses, and methods of using the apparatuses are provided. The apparatuses may include a concentrated solar dish comprising an opening and a gasifying reactor comprising a chamber. An entrance of the chamber may be aligned to the opening. The apparatuses may also include a thermal insulator disposed on outer surfaces of the concentrated solar dish and the gasifying reactor and a pipe in the thermal insulator. The pipe may be configured to deliver glycerol into the chamber of the gasifying reactor in the form of atomized mist. The glycerol may be delivered to a portion of the chamber adjacent the opening.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: January 4, 2022
    Assignee: Khalifa University of Science and Technology
    Inventors: Isam Janajreh, Manar Al Mazrouei, Mohammed Noorul Hussain
  • Patent number: 11143815
    Abstract: Embodiments include a fiber optic probe comprising an optical fiber, and a sensor component attached to the optical fiber, the sensor component including an asymmetric microlens array imprinted on a stimuli-responsive hydrogel. Embodiments further include a method of fabricating a fiber optic probe comprising depositing a stimuli-responsive hydrogel precursor solution on a substrate mold, the substrate mold including a concave asymmetric microlens array; contacting an end of an optical fiber with the stimuli-responsive hydrogel precursor solution deposited on the substrate mold; and exposing the end of the optical fiber and the stimuli-responsive hydrogel precursor solution to light to form a stimuli-responsive hydrogel sensor imprinted with a convex asymmetric microlens array and attached to the end of the optical fiber. Embodiments further include systems comprising the fiber optic probes.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: October 12, 2021
    Assignees: Khalifa University of Science and Technology, The University of Birmingham
    Inventors: Haider Butt, Mohamed Elsherif
  • Patent number: 11133891
    Abstract: A method for transmitting a data block begins with segmenting the data block into a number of data sub-blocks. Each data sub-block where a number of high bits is greater than a number of low bits is then inverted. The data sub-blocks are then grouped into sets of data sub-blocks. For each set of data sub blocks, a number of pulses indicative of a number of high bits in each one of the data sub-blocks in the set is transmitted, there is a delay, and a number of pulses indicative of each high bit in each data sub-block of the set of data sub-blocks is transmitted followed by a delay. Finally, a number of pulses indicative of which ones of the data sub-blocks were inverted is transmitted.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: September 28, 2021
    Assignee: Khalifa University of Science and Technology
    Inventors: Shahzad Muzaffar, Ibrahim Elfadel
  • Patent number: 11125635
    Abstract: A method includes the steps of providing a number of force consolidators between an object and a surface, providing a number of force sensors, each in a different one of the force consolidators, measuring an output of the force sensors, and processing the output of the force sensors to determine a total force exerted between the object and the surface. The force consolidators are each configured to reduce a portion of a surface area of the object into a consolidated surface area such that forces exerted on the portion of the surface area are concentrated in the consolidated surface area. By using the force consolidators along with the force sensors, the total force exerted by the object on the surface may be easily measured using off-the-shelf force sensor technologies.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: September 21, 2021
    Assignee: Khalifa University of Science and Technology
    Inventors: Shahzad Muzaffar, Ibrahim Elfadel
  • Patent number: 11105937
    Abstract: Devices, systems, and methods of using one or more memristors as a radiation sensor are enabled. A memristor can be attractive as a sensor due to its passive low power characteristics. Medical and environment monitoring are contemplated use cases. Sensing radiation as part of a security system (at an airport for example) and screening food for radiation exposure are also possible uses. The memristor as a radiation sensor may possibly provide an inexpensive and easy alternative to personal thermoluminescent dosimeters (TLD). Memristor devices with high current and low power operation may be attached with wearable plastic substrates. An example device includes two metal strips with a 50 ?m thick layer of TiO2 memristor material. The device may be made large relative to traditional memristors which are nanometers in scale but its increased thickness can significantly increase the probability of radiation interaction with the memristor material.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: August 31, 2021
    Assignee: Khalifa University of Science and Technology
    Inventors: Baker Mohammad, Maguy Abi Jaoude, Heba Abunahla, Mahmoud Al-Qutayri, Curtis O'Kelly
  • Patent number: 11051747
    Abstract: An electrocardiogram (ECG) processor is disclosed. The ECG processor includes ECG sampling circuitry configured in a first mode to acquire a continuous ECG sample set from an ECG signal by digitally sampling the ECG signal at a Nyquist rate for a first predetermined number of heartbeats and in a second mode to acquire a non-continuous ECG sample set from the ECG signal for a second predetermined number of heartbeats by digitally sampling active regions of the ECG signal that contain a PQRST complex and not from silent regions between adjacent PQRST complexes. The ECG processor also includes processing circuitry configured to determine from the continuous ECG sample set relative locations of the active regions and provide the relative locations of the active regions to the ECG sampling circuitry for sampling the ECG signal in the second mode.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 6, 2021
    Assignee: Khalifa University of Science and Technology
    Inventors: Hamza Yacoub Al Maharmeh, Hani Hasan Mustafa Saleh, Baker Mohammad, Mohammed Ismail Elnaggar, Mahmoud Al-Qutayri
  • Patent number: 11018789
    Abstract: This invention relates to end-to-end transparent clocks and methods of estimating skew in end-to-end transparent clocks. Embodiments of the invention relate to techniques for estimating clock skew between a free-running clock in a transparent clock and a master clock, in particular by using the timing information embedded in timing messages passing through the transparent clock. Further embodiments of the invention set out uses of these estimates to modify the residence times computed by the transparent clock and a synchronization network including such transparent clocks.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 25, 2021
    Assignees: Khalifa University of Science and Technology, British Telecommunications plc, Emirates Telecommunications Corporation
    Inventor: James Aweya
  • Patent number: 10981805
    Abstract: An aspect of the present disclosure relates to a solar humidifier. The solar humidifier includes a solar collector comprises perforations, wherein the solar collector exhibits an absorptance in the range of 0.70 to 0.95 when dry. The solar humidifier also includes a frame on which the solar collector is mounted, wherein the frame provides at least one opening for supplying brine to a surface of the solar collector. The solar humidifier further includes a collection box, wherein the collection box includes an interior volume and is enclosed on a side by the solar collector.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: April 20, 2021
    Assignee: Khalifa University of Science and Technology
    Inventor: Peter Armstrong
  • Patent number: 10979164
    Abstract: This invention relates to peer-to-peer transparent clocks and methods of estimating skew in peer-to-peer transparent clocks. Embodiments of the invention relate to techniques for estimating clock skew between a free-running clock in a transparent clock and a master clock, in particular by using the timing information embedded in timing messages passing through the transparent clock. Further embodiments of the invention set out uses of these estimates to modify the residence times computed by the transparent clock and a synchronization network including such transparent clocks.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: April 13, 2021
    Assignees: Khalifa University of Science and Technology, British Telecommunications plc, Emirates Telecommunications Corporation
    Inventor: James Aweya
  • Patent number: 10951596
    Abstract: A method for secure device-to-device communication using multilayered ciphers is provided. A selected cipher is employed to generate a pair of encryption/decryption keystreams for enabling multilayered encryption/decryption on a pulsed-index communication (PIC) packet(s). In examples discussed herein, a first layer encryption/decryption is performed by encrypting/decrypting a PIC data(s) (PD(s)) in the PIC packet(s) based on a first of the pair of encryption/decryption keystreams. In addition, a second layer encryption/decryption is performed by encrypting/decrypting selected control information (e.g., information related to encoding/decoding the PD(s)) in the PIC packet(s) based on a second of the pair of encryption/decryption keystreams.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: March 16, 2021
    Assignee: Khalifa University of Science and Technology
    Inventors: Shahzad Muzaffar, Owais Talaat Waheed, Ibrahim Elfadel
  • Patent number: 10880625
    Abstract: A delayed-activation sensor system includes at least one microsensor. The microsensor may include at least one sensor module for sensing a condition in an environment and a dissolvable coating encapsulating at least a portion of the at least one sensor module such that the dissolvable coating prevents the at least one sensor module from sensing the condition in the environment. The dissolvable coating may be dissolvable in a fluid in the environment such that the sensor module is activated after being located in the environment for a period of time. The microsensor may also include at least one energy harvester module to generate electrical power for the microsensor from the environment.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 29, 2020
    Assignees: Khalifa University of Science And Technology, ABU DHABI COMPANY FOR ONSHORE PETROLEUM OPERATION LIMITED
    Inventors: Mohamed Ben Mahmoud Sassi, Manhal Sirat, Irfan Abdulqayyum Saadat, Rashid Kamel Abu Al-Rub
  • Patent number: 10875807
    Abstract: Superhydrophilic and antifogging non-porous TiO2 films for glass substrates and methods of providing the TiO2 films are provided. The TiO2 films may maintain a water contact angle less than 5° in the dark for five days after an annealing treatment, and the water contact angle of the TiO2 films may stabilize at less than 20° after ten days from the annealing treatment. The TiO2 films may have a thickness of about 20 nm and may be transparent. The methods may include depositing a TiO2 film on a glass substrate using e-beam evaporation. The methods may further include annealing the TiO2 film after depositing the TiO2 film on the glass substrate. The methods may not include UV radiation.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: December 29, 2020
    Assignee: Khalifa University of Science and Technology
    Inventors: Giovanni Palmisano, Corrado Garlisi
  • Patent number: 10819149
    Abstract: Disclosed is an energy mixer having a first active diode coupled between a first input node and an output node, and a second active diode coupled between a second input node and the output node. A first capacitor is coupled between the first input node and a dynamic node, and a second capacitor is coupled between the second input node and a third node. Switching circuitry is configured to selectively couple the dynamic node between a fixed voltage node and the second input node in response to a control signal provided by control circuitry. When an output voltage at the output node is within a first range, the dynamic node is coupled to the fixed voltage node and when the output voltage is within a lower voltage second range, the dynamic node is coupled to the second input node such that first capacitor and second capacitor are coupled in series.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: October 27, 2020
    Assignee: Khalifa University of Science and Technology
    Inventors: Mohammad Radwan Alhawari, Baker Mohammad, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar