Abstract: An irradiation system is provided which comprises a cabinet housing one or more X-ray tubes providing an irradiation source for a biomass contained within a cylindrical container arranged on a rotating device. The X-ray tubes generate directional X-ray beams and are provided in ultra-close proximity to the container, and the X-ray tubes can be configured to traverse the container. The rotational movement and traversal during the irradiation process ensure a more even irradiation of the entire biomass in the container.
Abstract: An irradiation system is provided which comprises a cabinet housing one or more X-ray tubes providing an irradiation source for a biomass contained within a cylindrical container arranged on a rotating device. The X-ray tubes generate directional X-ray beams and are provided in ultra-close proximity to the container, and the X-ray tubes can be configured to traverse the container. The rotational movement and traversal during the irradiation process ensure a more even irradiation of the entire biomass in the container.
Abstract: An apparatus and method for actively managing the current provided to an X-ray filament is provided. A feedback measurement of the actual filament current supplied to an X-ray filament is provided into a current manager and feedback system. An error amplifier compares the feedback measurement to a filament reference command indicating the appropriate current amount to be supplied to the X-ray filament, and the output of the error amplifier runs a pulse width modulator to provide a signal to an inverter to supply a voltage to the X-ray filament transformer. When a comparator senses sufficient high voltage is supplied to the X-ray tube, a second error amplifier is allowed to add to the filament current command an amount sufficient to make the X-ray tube's emission current match the commanded emission current. Additional circuitry and electronic switches are provided to allow the apparatus to operate in a dual-filament system.
Abstract: An apparatus is provided including a cascaded transformer set and a voltage divider. The cascaded transformer set includes a plurality of transformers, each having a primary and a secondary winding. The secondary winding of one transformer feeds the primary winding of an adjacent transformer. The voltage divider includes a plurality of capacitors and a plurality of resistors configured to divide a voltage applied to the cascaded transformer set among the plurality of transformers. The capacitors of the voltage divider may include a series of disks that are also used in the support structure of the apparatus.
Abstract: An anode terminal is provided for use high voltage applications that also serves as a shield, and which reduces the overall size of the anode terminal and an enclosure containing the anode terminal. The anode terminal includes a toroid and the maximum radius of curvature that is required to provide an optimal field enhancement reduction is reserved for the section of the toroid that is closest to ground, including the walls of the enclosure. The toroid of the anode terminal has variable radii of curvature along its outer surface and is asymmetrical.