Patents Assigned to Kingfa Science & Technology Co., Ltd.
  • Patent number: 8981034
    Abstract: A method for preparing polyaryletherketone-based copolymer by using quaternary copolymerization technology comprises: (1) adding high-temperature organic solvent into a three-necked flask equipped with a thermometer, a nitrogen-feeding pipe, and a stirrer; then stirring and heating; orderly adding 4,4?-difluordiphenylketone, 4,4?-bifluorotriphenyldione, hydroquinone, and 4,4?-dihydroxydiphenylketone after the high-temperature organic solvent has been melted, and stirring to completely dissolve them; adding alkali carbonate of 1-5% excessive amount relative to total mole of hydroquinone and 4,4?-dihydroxydiphenylketone; heating to 220-230° C. while stirring, and maintaining the temperature for 20-40 minutes to complete the first salt-forming reaction, (2) heating to 250-260° C., and maintaining the temperature for 20-40 minutes to complete the second salt-forming reaction, (3) heating to 300-320° C.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: March 17, 2015
    Assignee: Kingfa Science & Technology Co., Ltd.
    Inventors: Zhongwen Wu, Rongtang Ma
  • Patent number: 8557945
    Abstract: The present invention relates to a kind of biodegradable polyester and its preparation method, which belongs to the field of biodegradable co-polyester product technology. The number-average molecular weight of the biodegradable polyester material under this invention is 6000-135000 g/mol, the molecular weight distribution is 1.2-6.5, and the range of crystallization temperature is 15° C.-105° C., which could overcome the disadvantages of existing technical products and can be processed into membrane materials, sheet materials and foam materials. During processing, the picking property will be dramatically changed with the appearance quality improved; after heat resistance is improved, this new type of polyester material could also be applied to the processing course with long cycles, for example, the injection processing course, and the biodegradable aliphatic/aromatic polyester materials provided by this invention has excellent mechanical properties.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: October 15, 2013
    Assignees: Kingfa Science & Technology Co., Ltd, Shanghai Kingfa Science & Technology Co., Ltd
    Inventors: Yibin Xu, Renxu Yuan, Tongmin Cai, Jian Jiao, Shiyong Xia, Zhimin Yuan
  • Patent number: 8486313
    Abstract: The present invention discloses a thermoplastic flame-retardant alloy and a method for preparing it, composed of the following components as below (parts by weight): 5-94 parts of ABS resin, 3-94 parts of polyester or co-polyester or the mixture of both, 1-50 parts of brominated flame retardant, 1-10 parts of flame-retardant aid, 0.001-30 parts of chlorinated polyethylene (CPE), 0.001-2 parts of anti-dripping agent and 0.1-6 parts of processing aid. Comparing with the ABS flame retardant presenting the prior art, the thermoplastic flame-retardant alloy features better glossiness, scratch resistance, stronger ultraviolet radiation resistance and better mechanical property, thus making up for the disadvantage that the flame-retardant ABS is prone to become yellow on some occasions with high weatherability requirements. Furthermore, the preparation method of the thermoplastic flame-retardant alloy for the present invention is successive, stable and feasible.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: July 16, 2013
    Assignees: Kingfa Science & Technology Co., Ltd, Shanghai Kingfa Science & Technology Co., Ltd
    Inventors: Jingwei Xu, Xiaoguang Ye, Bo Wu, Xiaohui Wu, Fanglin Ning, Fuyu Hu
  • Patent number: 8420772
    Abstract: The present invention relates to a semi-aromatic polyamide and a method for preparing it with low wastewater discharge. The semi-aromatic polyamide for the present invention is obtained by introducing aromatic dicarboxylic acid, aliphatic diamine containing 4˜14 carbon atoms and the wastewater generated during the previous prepolymerization into an autoclave for prepolymerization reaction and then further polymerizing the prepolymer. In this preparation method, the wastewater generated during polymerization is recycled, thus greatly reducing the wastewater discharge; the raw materials in the wastewater are effectively recycled, thus improving the utilization rate of raw materials; meanwhile, the diamine in the wastewater compensates that lost along with water discharge during prepolymerization, thus ensuring the Mole ratio balance between dicarboxylic acid monomer and diamine monomer.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: April 16, 2013
    Assignees: Kingfa Science & Technology Co., Ltd, Shanghai Kingfa Science & Technology Co., Ltd
    Inventors: Min Cao, Shiyong Xia, Xianbo Huang, Tongmin Cai, Xiangbin Zeng
  • Publication number: 20120095182
    Abstract: A method for preparing polyaryletherketone-based copolymer by using quaternary copolymerization technology comprises: (1) adding high-temperature organic solvent into a three-necked flask equipped with a thermometer, a nitrogen-feeding pipe, and a stirrer; then stirring and heating; orderly adding 4,4?-difluordiphenylketone, 4,4?-bifluorotriphenyldione, hydroquinone, and 4,4?-dihydroxydiphenylketone after the high-temperature organic solvent has been melted, and stirring to completely dissolve them; adding alkali carbonate of 1-5% excessive amount relative to total mole of hydroquinone and 4,4?-dihydroxydiphenylketone; heating to 220-230° C. while stirring, and maintaining the temperature for 20-40 minutes to complete the first salt-forming reaction, (2) heating to 250-260° C., and maintaining the temperature for 20-40 minutes to complete the second salt-forming reaction, (3) heating to 300-320° C.
    Type: Application
    Filed: June 23, 2010
    Publication date: April 19, 2012
    Applicant: KINGFA SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Zhongwen Wu, Rongtang Ma
  • Publication number: 20110190468
    Abstract: The present invention relates to a kind of biodegradable polyester and its preparation method, which belongs to the field of biodegradable co-polyester product technology. The number-average molecular weight of the biodegradable polyester material under this invention is 6000-135000 g/mol, the molecular weight distribution is 1.2-6.5, and the range of crystallization temperature is 15° C.-105° C., which could overcome the disadvantages of existing technical products and can be processed into membrane materials, sheet materials and foam materials. During processing, the picking property will be dramatically changed with the appearance quality improved; after heat resistance is improved, this new type of polyester material could also be applied to the processing course with long cycles, for example, the injection processing course, and the biodegradable aliphatic/aromatic polyester materials provided by this invention has excellent mechanical properties.
    Type: Application
    Filed: May 15, 2009
    Publication date: August 4, 2011
    Applicants: Kingfa Science & Technology Co., Ltd., Shanghai Kingfa Science & Technology Co., Ltd.
    Inventors: Yibin Xu, Renxu Yuan, Tongmin Cai, Jian Jiao, Shiyong Xia, Zhimin Yuan
  • Publication number: 20110095246
    Abstract: The present invention discloses a thermoplastic flame-retardant alloy and a method for preparing it, composed of the following components by the shares and weights as below: 5-94 shares of ABS resin, 3-94 shares of polyester or co-polyester or the mixture of both, 1-50 shares of brominated flame retardant, 1-10 shares of synergistic flame-retardant, 0.001-30 shares of chlorinated polyethylene (CPE), 0.001-2 shares of anti-dripping agent and 0.1-6 shares of processing aid. Comparing with the ABS flame retardant presenting the prior art, the thermoplastic flame-retardant alloy features better glossness, scratch resistance, stronger ultraviolet radiation resistance and better mechanical property, thus making up for the disadvantage that the flame-retardant ABS is prone to become yellow on some occasions with high weatherability requirements. Furthermore, the preparation method of the thermoplastic flame-retardant alloy for the present invention is successive, stable and feasible.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 28, 2011
    Applicants: KINGFA SCIENCE & TECHNOLOGY CO., LTD., SHANGHAI KINGFA SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Jingwei Xu, Xiaoguang Ye, Bo Wu, Xiaohui Wu, Fanglin Ning, Fuyu Hu
  • Publication number: 20100267923
    Abstract: The present invention relates to a semi-aromatic polyamide and a method for preparing it with low wastewater discharge. The semi-aromatic polyamide for the present invention is obtained by introducing aromatic dicarboxylic acid, aliphatic diamine containing 4˜14 carbon atoms and the wastewater generated during the previous prepolymerization into an autoclave for prepolymerization reaction and then further polymerizing the prepolymer. In this preparation method, the wastewater generated during polymerization is recycled, thus greatly reducing the wastewater discharge; the raw materials in the wastewater are effectively recycled, thus improving the utilization rate of raw materials; meanwhile, the diamine in the wastewater compensates that lost along with water discharge during prepolymerization, thus ensuring the Mole ratio balance between dicarboxylic acid monomer and diamine monomer.
    Type: Application
    Filed: July 11, 2008
    Publication date: October 21, 2010
    Applicants: Kingfa Science & Technology Co., Ltd., Shanghai Kingfa Science & Technology Co., Ltd.
    Inventors: Min Cao, Shiyong Xia, Xianbo Huang, Tongmin Cai, Xiangbin Zeng