Patents Assigned to Kips Bay Medical, Inc.
  • Patent number: 8906082
    Abstract: Stents and methods of using stents are provided. Stents of the invention provide external support structure for a blood vessel segment disposed within, wherein the stents are capable of resilient radial expansion in a manner mimicking the compliance properties of an artery. The stent may be formed of a knitted or braided mesh formed so as to provide the needed compliance properties. A venous graft with the stent and a vein segment disposed within is provided, wherein graft is capable of mimicking the compliance properties of an artery. Methods of selecting stents for downsizing and methods of using the stents of the invention in downsizing and smoothening are provided. Methods of replacing a section of an artery with a venous graft including a stent of the invention are provided. Methods of reducing intimal hyperplasia in implanted vein segment in a venous graft using stents of the invention are provided.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: December 9, 2014
    Assignee: Kips Bay Medical, Inc.
    Inventors: Peter P. Zilla, Nasser Rafiee, Deon Bezuidenhout, Thomas Franz, Mark Yeoman, Hellmut C Bowles, Nareak Douk, Michael F Wolf, Paul Human
  • Patent number: 8747451
    Abstract: Stents and methods of using stents are provided. Stents of the invention provide external support structure for a blood vessel segment disposed within, wherein the stents are capable of resilient radial expansion in a manner mimicking the compliance properties of an artery. The stent may be formed of a knitted or braided mesh formed so as to provide the needed compliance properties. A venous graft with the stent and a vein segment disposed within is provided, wherein graft is capable of mimicking the compliance properties of an artery. Methods of selecting stents for downsizing and methods of using the stents of the invention in downsizing and smoothening are provided. Methods of replacing a section of an artery with a venous graft including a stent of the invention are provided. Methods of reducing intimal hyperplasia in implanted vein segment in a venous graft using stents of the invention are provided.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: June 10, 2014
    Assignee: Kips Bay Medical, Inc.
    Inventors: Peter P. Zilla, Nasser Rafiee, Deon Bezuidenhout, Thomas Franz, Mark Yeoman, Helmut Bowles, Nareak Douk, Michael C. Wolf, Paul Human
  • Publication number: 20140039352
    Abstract: Stents and methods of using stents are provided. Stents of the invention provide external support structure for a blood vessel segment disposed within, wherein the stents are capable of resilient radial expansion in a manner mimicking the compliance properties of an artery. The stent may be formed of a knitted or braided mesh formed so as to provide the needed compliance properties. A venous graft with the stent and a vein segment disposed within is provided, wherein graft is capable of mimicking the compliance properties of an artery. Methods of selecting stents for downsizing and methods of using the stents of the invention in downsizing and smoothening are provided. Methods of replacing a section of an artery with a venous graft including a stent of the invention are provided. Methods of reducing intimal hyperplasia in implanted vein segment in a venous graft using stents of the invention are provided.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: Kips Bay Medical, Inc.
    Inventors: Peter P. Zilla, Nasser Rafiee, Deon Bezuidenhout, Thomas Franz, Mark Yeoman, Hellmut C. Bowles, Nareak Douk, Michael F. Wolf, Paul Human
  • Publication number: 20130144374
    Abstract: Stents and methods of using stents are provided. Stents of the invention provide external support structure for a blood vessel segment disposed within, wherein the stents are capable of resilient radial expansion in a manner mimicking the compliance properties of an artery. The stent may be formed of a knitted or braided mesh formed so as to provide the needed compliance properties. A venous graft with the stent and a vein segment disposed within is provided, wherein graft is capable of mimicking the compliance properties of an artery. Methods of selecting stents for downsizing and methods of using the stents of the invention in downsizing and smoothening are provided. Methods of replacing a section of an artery with a venous graft including a stent of the invention are provided. Methods of reducing intimal hyperplasia in implanted vein segment in a venous graft using stents of the invention are provided.
    Type: Application
    Filed: January 21, 2013
    Publication date: June 6, 2013
    Applicant: KIPS BAY MEDICAL, INC.
    Inventor: Kips Bay Medical, Inc.
  • Patent number: 8382814
    Abstract: Stents and methods of using stents are provided. Stents of the invention provide external support structure for a blood vessel segment disposed within, wherein the stents are capable of resilient radial expansion in a manner mimicking the compliance properties of an artery. The stent may be formed of a knitted or braided mesh formed so as to provide the needed compliance properties. A venous graft with the stent and a vein segment disposed within is provided, wherein graft is capable of mimicking the compliance properties of an artery. Methods of selecting stents for downsizing and methods of using the stents of the invention in downsizing and smoothening are provided. Methods of replacing a section of an artery with a venous graft including a stent of the invention are provided. Methods of reducing intimal hyperplasia in implanted vein segment in a venous graft using stents of the invention are provided.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: February 26, 2013
    Assignee: Kips Bay Medical, Inc.
    Inventors: Peter P. Zilla, Nasser Rafiee, Deon Bezuidenhout, Thomas Franz, Mark Yeoman, Hellmut Bowles, Nareak Douk, Michael F Wolf, Paul Human
  • Patent number: 8353814
    Abstract: A method for securing a compliant scaffold to an outer surface of a vascular graft includes positioning the scaffold radially about an elongated support tube which includes first and second radially outwardly flared end portions respectively defining first and second open ends of the support tube. The method further includes pulling the vascular graft through a lumen of the support tube, and axially deploying the scaffold over the first end portion of the support tube and into compliant contact with the outer surface of the vascular graft.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: January 15, 2013
    Assignee: Kips Bay Medical, Inc.
    Inventors: Manuel A. Villafana, Eric E. Solien, Michael P. Winegar, Michael J. Urick
  • Patent number: 8172746
    Abstract: A venous graft for replacement of a section of an artery and methods of making the graft. The graft comprises a flexible, resilient, generally tubular external support and a vein segment carried within and having an ablumenal surface in contact with and supported by the tubular support, the venous graft being capable of resilient radial expansion in a manner mimicking the radial compliance properties of an artery.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: May 8, 2012
    Assignee: Kips Bay Medical, Inc.
    Inventors: Peter P. Zilla, Nasser Rafiee, Deon Bezuidenhout, Thomas Franz, Mark Yeoman, Hellmut Bowles, Narenk Douk, Michael F. Wolf
  • Patent number: 8057537
    Abstract: A venous graft for replacement of a section of an artery and methods of making the graft. The graft comprises a flexible, resilient, generally tubular external support and a vein segment carried within and having an ablumenal surface in contact with and supported by the tubular support, the venous graft being capable of resilient radial expansion in a manner mimicking the radial compliance properties of an artery.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: November 15, 2011
    Assignee: Kips Bay Medical, Inc.
    Inventors: Peter P. Zilla, Nasser Rafiee, Deon Bezuidenhout, Thomas Franz, Mark Yeoman, Hellmut Bowles, Nareak Douk, Michael F. Wolf
  • Patent number: 7998188
    Abstract: Stents and methods of using stents are provided. Stents of the invention provide external support structure for a blood vessel segment disposed within, wherein the stents are capable of resilient radial expansion in a manner mimicking the compliance properties of an artery. The stent may be formed of a knitted or braided mesh formed so as to provide the needed compliance properties. A venous graft with the stent and a vein segment disposed within is provided, wherein graft is capable of mimicking the compliance properties of an artery. Methods of selecting stents for downsizing and methods of using the stents of the invention in downsizing and smoothening are provided. Methods of replacing a section of an artery with a venous graft including a stent of the invention are provided. Methods of reducing intimal hyperplasia in implanted vein segment in a venous graft using stents of the invention are provided.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: August 16, 2011
    Assignee: Kips Bay Medical, Inc.
    Inventors: Peter Paul Zilla, Nasser Rafiee, Deon Bezuidenhout, Thomas Franz, Mark Yeoman, Hellmut Bowles, Nareak Douk, Michael F. Wolf, Paul Human
  • Patent number: 7759099
    Abstract: Apparatus and methods for seeding an implantable medical device, such as a vascular prosthesis, with cells, such as endothelial cells, are described. The invention supports techniques for seeding a luminal surface of the device with axial centrifugation. Cells are introduced in suspension into the lumen of the device. The introduction of the cells may occur after a blood centrifugation product, such as platelet-poor plasma, is applied to the luminal surface. After the cells are introduced, the device is then subjected to centrifugation around a longitudinal axis defined by the lumen. Axial centrifugation causes the cells to concentrate toward and adhere to the luminal surface. Shortly after axial centrifugation, the seeded device can be presented for implantation in a patient. The implantable medical device may be inserted into a protective sleeve prior to seeding the device with cells, and the sleeve may or may not be removed prior to implantation.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: July 20, 2010
    Assignee: Kips Bay Medical, Inc.
    Inventors: Michael F. Wolf, Laurie A. Yunker, Paul V. Trescony