Patents Assigned to Knite, Inc.
-
Patent number: 12158132Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: GrantFiled: August 6, 2021Date of Patent: December 3, 2024Assignee: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Patent number: 11715935Abstract: An igniter having at least two electrodes spaced from each other by an insulating member having a substantially continuous surface along a path between the electrodes. The electrodes extend substantially parallel to each other for a distance both above and below said surface. The insulating member has a channel (recess) for receiving at least a portion of a length of at least one of said electrodes below and to said surface of the insulating member. The surface of the insulating member may preferably be augmented with a conductivity enhancing agent. The insulating member and electrodes are configured so that an electric field between the electrodes at said surface does not have abrupt field intensity changes, whereby when a potential is applied to the electrodes sufficient to cause breakdown to occur between the electrodes, discharge occurs at said surface of the insulating member to define a plasma initiation region.Type: GrantFiled: July 6, 2021Date of Patent: August 1, 2023Assignee: Knite, Inc.Inventor: Artur P. Suckewer
-
Publication number: 20230114936Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: July 15, 2022Publication date: April 13, 2023Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Patent number: 11419204Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: GrantFiled: March 20, 2020Date of Patent: August 16, 2022Assignee: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20220173577Abstract: An igniter having at least two electrodes spaced from each other by an insulating member having a substantially continuous surface along a path between the electrodes. The electrodes extend substantially parallel to each other for a distance both above and below said surface. The insulating member has a channel (recess) for receiving at least a portion of a length of at least one of said electrodes below and to said surface of the insulating member. The surface of the insulating member may preferably be augmented with a conductivity enhancing agent. The insulating member and electrodes are configured so that an electric field between the electrodes at said surface does not have abrupt field intensity changes, whereby when a potential is applied to the electrodes sufficient to cause breakdown to occur between the electrodes, discharge occurs at said surface of the insulating member to define a plasma initiation region.Type: ApplicationFiled: July 6, 2021Publication date: June 2, 2022Applicant: Knite, Inc.Inventor: Artur P. Suckewer
-
Publication number: 20220030694Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: August 6, 2021Publication date: January 27, 2022Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20210059038Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: March 20, 2020Publication date: February 25, 2021Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20200373742Abstract: An igniter having at least two electrodes spaced from each other by an insulating member having a substantially continuous surface along a path between the electrodes. The electrodes extend substantially parallel to each other for a distance both above and below said surface. The insulating member has a channel (recess) for receiving at least a portion of a length of at least one of said electrodes below and to said surface of the insulating member. The surface of the insulating member may preferably be augmented with a conductivity enhancing agent. The insulating member and electrodes are configured so that an electric field between the electrodes at said surface does not have abrupt field intensity changes, whereby when a potential is applied to the electrodes sufficient to cause breakdown to occur between the electrodes, discharge occurs at said surface of the insulating member to define a plasma initiation region.Type: ApplicationFiled: December 20, 2019Publication date: November 26, 2020Applicant: Knite, Inc.Inventor: Artur P. Suckewer
-
Publication number: 20200367352Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: December 11, 2019Publication date: November 19, 2020Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20190027903Abstract: An igniter having at least two electrodes spaced from each other by an insulating member having a substantially continuous surface along a path between the electrodes. The electrodes extend substantially parallel to each other for a distance both above and below said surface. The insulating member has a channel (recess) for receiving at least a portion of a length of at least one of said electrodes below and to said surface of the insulating member. The surface of the insulating member may preferably be augmented with a conductivity enhancing agent. The insulating member and electrodes are configured so that an electric field between the electrodes at said surface does not have abrupt field intensity changes, whereby when a potential is applied to the electrodes sufficient to cause breakdown to occur between the electrodes, discharge occurs at said surface of the insulating member to define a plasma initiation region.Type: ApplicationFiled: July 12, 2018Publication date: January 24, 2019Applicant: Knite, Inc.Inventor: Artur P. Suckewer
-
Publication number: 20180368247Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: January 22, 2018Publication date: December 20, 2018Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20180359844Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: February 16, 2018Publication date: December 13, 2018Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20170105275Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: September 16, 2016Publication date: April 13, 2017Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20170085059Abstract: An igniter having at least two electrodes spaced from each other by an insulating member having a substantially continuous surface along a path between the electrodes. The electrodes extend substantially parallel to each other for a distance both above and below said surface. The insulating member has a channel (recess) for receiving at least a portion of a length of at least one of said electrodes below and to said surface of the insulating member. The surface of the insulating member may preferably be augmented with a conductivity enhancing agent. The insulating member and electrodes are configured so that an electric field between the electrodes at said surface does not have abrupt field intensity changes, whereby when a potential is applied to the electrodes sufficient to cause breakdown to occur between the electrodes, discharge occurs at said surface of the insulating member to define a plasma initiation region.Type: ApplicationFiled: May 25, 2016Publication date: March 23, 2017Applicant: Knite, Inc.Inventor: Artur P. Suckewer
-
Publication number: 20160381779Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: June 17, 2016Publication date: December 29, 2016Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20140232256Abstract: An igniter having at least two electrodes spaced from each other by an insulating member having a substantially continuous surface along a path between the electrodes. The electrodes extend substantially parallel to each other for a distance both above and below said surface. The insulating member has a channel (recess) for receiving at least a portion of a length of at least one of said electrodes below and to said surface of the insulating member. The surface of the insulating member may preferably be augmented with a conductivity enhancing agent. The insulating member and electrodes are configured so that an electric field between the electrodes at said surface does not have abrupt field intensity changes, whereby when a potential is applied to the electrodes sufficient to cause breakdown to occur between the electrodes, discharge occurs at said surface of the insulating member to define a plasma initiation region.Type: ApplicationFiled: July 26, 2012Publication date: August 21, 2014Applicant: Knite, Inc.Inventor: Artur P. Suckewer
-
Publication number: 20140091712Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: December 3, 2013Publication date: April 3, 2014Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Patent number: 8622041Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: GrantFiled: August 31, 2011Date of Patent: January 7, 2014Assignee: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Patent number: 8186321Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: GrantFiled: November 26, 2008Date of Patent: May 29, 2012Assignee: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III
-
Publication number: 20110309749Abstract: An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.Type: ApplicationFiled: August 31, 2011Publication date: December 22, 2011Applicant: Knite, Inc.Inventors: Artur P. Suckewer, Szymon Suckewer, Frederick H. Selmon, III