Abstract: An automated external defibrillator (AED) is described which spends an increased proportion of a rescue in a CPR mode. This is accomplished by use of a single shock protocol which causes the AED to spend less time in shock analysis and delivery activities as compared with the typical multiple shock protocol. An AED of the present invention preferably is configured such that the rescue protocol can be modified or changed easily without the need to remove the battery or use specialized hardware or software. Preferably the shock waveform of the single shock is a biphasic waveform delivering at least 150 Joules of energy and more preferably at least 200 Joules of energy.
Abstract: A method of transferring a flexible layer to a substrate makes use of a partial bulge in the flexible layer, which does not make contact with the substrate. The partial bulge advances to the location of an alignment marker on the substrate. When alignment adjustments are needed, they are made with the partial bulge in place so that more reproducible positioning is possible when fully advancing the flexible layer against the substrate.
Abstract: A dual mode radiation detector includes an x-ray detector layer configured to convert incident x-ray radiation into x-ray electrical data, where the x-ray detector forms an incident face of the dual mode radiation detector. The dual mode radiation detector further includes a collimator disposed below the x-ray detector layer, and a gamma photon detector layer disposed below the collimator to convert incident gamma photons into gamma photon electrical data.
Abstract: A defibrillator and method for using a defibrillator which adopts an ECG analysis algorithm that can detect a cardiac arrhythmia in the presence of noise artifact induced by cardio pulmonary resuscitation (CPR) compressions. The apparatus and method provides both of a continuous and scheduled mode of operation for interleaving periods of CPR with electrotherapy, in a manner that improves the effectiveness of the rescue, resulting in more CPR “hands-on” time, better treatment of refibriUation, and reduced transition times between CPR and electrotherapy.
Type:
Grant
Filed:
December 9, 2015
Date of Patent:
January 21, 2020
Assignee:
KONINKLIJKE PHILIPS N.V.
Inventors:
Chenguang Liu, Stacy Earl Gehman, James Knox Russell, Christopher William Fleming, Dawn Blilie Jorgenson, David Roy Axness, Jeffrey Martin Boschee
Abstract: An actuator (12) for a personal care appliance (10) having an eccentric core (21) to preload the actuator (12) to prevent rattling caused by detrimental reactionary forces. The eccentric core (21) includes a pole assembly (24) radially extending from a spindle (22) having at least a first set (25-1) and a second set (25-2) of pole members. The first set (25-1) has a greater length as measured from the center of the spindle (22) than the second set (24-2), reducing the magnet gap on one side of the spindle (22) to create an eccentric core and preload the actuator (12). Alternatively, the preload can be mechanically created by a set of bearings (28) disposed within housing (18) of the actuator (12), where the bearings (28) have a centerline (A3) offset from the principal axis (A1) of the housing (18).
Type:
Grant
Filed:
December 15, 2015
Date of Patent:
January 21, 2020
Assignee:
KONINKLIJKE PHILIPS N.V.
Inventors:
Kevin Arnold Miller, Wolter F. Benning, Gregory Russ Goddard, Evert Alle Helfrich
Abstract: A medical device for multiple treatment therapies includes a hollow tube (102) having a first end portion with an electrode (104) disposed at the first end portion and an insulator (108) configured over a length of the tube such that conductive materials of the tube, except for the electrode, are electrically isolated from an exterior surface the tube. A conductive connection (127) is configured to electrically couple to the electrode to provide a voltage thereto. A selectively closeable valve (106) is configured to dispense a medical fluid from the tube.
Type:
Grant
Filed:
July 23, 2013
Date of Patent:
January 21, 2020
Assignee:
Koninklijke Philips N.V.
Inventors:
Thomas Erik Amthor, Sascha Krueger, Steffen Weiss, Falk Uhlemann
Abstract: A catalog (34) of molecular marker tests specifies molecular marker tests annotated with clinical applicability annotations. An electronic patient medical record (22) stores genetic sequencing data (20) of a patient. A clinical decision support (CDS) system (30) is configured to track the clinical context of the patient wherein the clinical context includes at least a disease diagnosis and a current patient care stage. A catalog search module (32) is configured to search the catalog of molecular marker tests to identify a molecular marker test having clinical applicability to the patient in the clinical context tracked by the CDS system. The search is automatically triggered by occurrence of a trigger event defined by a set of triggering rules. A testing module (44) is configured to perform a molecular marker test identified by the identification module in silico using the genetic sequencing data of the patient stored in the electronic patient medical record.
Abstract: The present disclosure pertains to a system configured to manage a sleep session of a subject. In some embodiments, the sleep session is a nap and the system is configured to increase the restorative value of the nap by enhancing and/or maintaining sleep slow waves (and/or slow wave activity estimated using an EEG) in the subject during the nap with sensory stimuli. The present system is configured to enhance restorative sleep during a nap by delivering sensory stimulation to the subject during lighter NREM sleep stages (e.g., during a portion of stage N2 sleep) while still avoiding arousals. In some embodiments, the system is configured to facilitate a “powernap” by delivering the sensory stimulation to the subject in such a way so as to prevent transition into deep sleep (e.g., stage N3 sleep).
Abstract: Secretions that have accumulated at or near an airway of a subject (12) as the subject (12) is being mechanically ventilated are removed by suctioning. Before, during, and/or after the removal of the secretions, steps are taken to mitigated the impact of the suctioning used for secretion removal on the subject (12). As such, the timing of suction used to remove secretions may be influenced or controlled, ventilation of the subject (12) during suction may be adjusted, ventilation of the subject (12) prior to secretion removal may be adjusted to prepare the lungs of the subject (12) for secretion removal, ventilation of the subject (12) subsequent to suction for secretion removal may be adjusted, and/or other techniques for reducing the impact of suctioning for secretion removal on the subject (12) may be implemented.
Abstract: The invention provides, amongst others for application in a lighting unit, a phosphor selected from the class of M2D2C2-2bBbA2N6:Ln??(I) with M=selected from the group consisting of divalent Ca, Sr, and Ba; D=selected from the group consisting of monovalent Li, divalent Mg, Mn, Zn, Cd, and trivalent Al and Ga; C=selected from the group consisting of monovalent Li and Cu; B=selected from the group consisting of divalent Mg, Zn, Mn and Cd; A=selected from the group consisting of tetravalent Si, Ge, Ti, and Hf; Ln=selected from the group consisting of ES and RE; ES=selected from the group consisting of divalent Eu, Sm and Yb; RE=selected from the group consisting of trivalent Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; and 0?b?1.
Type:
Grant
Filed:
November 5, 2015
Date of Patent:
January 21, 2020
Assignee:
Koninklijke Philips N.V.
Inventors:
Peter Josef Schmidt, Philipp-Jean Strobel, Sebastian Florian Schmiechen, Cora Sieglinde Hecht, Volker Weiler, Wolfgang Schnick
Abstract: It is an object of the invention to improve MRI based treatment, especially MRI based radiotherapy. This object is achieved by a method for calibrating a magnetic resonance imaging (MRI) phantom having an expected geometry and comprising at least one MRI detectable part with a position within the geometry which is known with a geometric inaccuracy. The method comprises the following steps: step 1: placing the phantom at a predetermined location in a magnetic resonance system such that the MRI detectable part is within a symmetry plane of a gradient system of the magnetic resonance imaging system and; step 2: acquiring an MRI image of the MRI detectable part of the phantom by means of a first sequence, wherein the MRI image comprises multiple slices; step 3: determining the geometric inaccuracy of the MRI detectable part of the MRI phantom based on the position and the representation of the part in the MRI image.
Type:
Grant
Filed:
September 6, 2016
Date of Patent:
January 21, 2020
Assignee:
KONINKLIJKE PHILIPS N.V.
Inventors:
Panu Tapani Vesanen, Jukka Ilmari Tanttu
Abstract: Method and apparatus (DMS) manage dosage in radiation therapy planning and/or delivery. Images of a region of interest ROI are acquired at different times. A registration transformation is computed that deforms one of the two images into the other. A magnitude of the transformation is then computed based on a suitable metric. If the computed magnitude is found to comply with a pre-defined criterion, the transformation is used to deform a dose distribution map and compute, based on the deformed dose map, therefrom a new fluence map.
Type:
Grant
Filed:
August 4, 2015
Date of Patent:
January 21, 2020
Assignee:
KONINKLIJKE PHILIPS N.V.
Inventors:
Alfonso Agatino Isola, Davide Fontanarosa
Abstract: The invention relates to a system (100) for generating and collimating an X-ray beam (104), comprising an X-ray tube insert for generating the X-ray beam, the X-ray tube inert being a vacuum tube; a tube housing (102) for containing the X-ray tube insert (101), the tube housing being made of X-ray absorbing material; a collimator (103) for collimating the X-ray beam (104); wherein the collimator (103) is arranged in between the X-ray tube insert (101) and the tube housing (102). The invention also relates to a corresponding apparatus for scanning an object of interest with an X-ray beam (104) comprising the system.
Abstract: A magnetic resonance imaging protocol includes an acquisition segment to control an acquisition sequence to acquire magnetic resonance signals at a lower main magnetic field strength. A reconstruction segment controls reconstruction of a diagnostic magnetic resonance image from the magnetic resonance signals at a lower main magnetic field strength. A segmentation segment controls segmentation of a predetermined image detail of the diagnostic magnetic resonance image. In the magnetic resonance imaging protocol, the acquisition sequence has a set of imaging parameters that cause the image quality of the diagnostic magnetic resonance to be similar to the image quality of the magnetic resonance training images, e.g., acquired at 7 T.
Type:
Grant
Filed:
October 30, 2015
Date of Patent:
January 21, 2020
Assignee:
Koninklijke Philips N.V.
Inventors:
Radu Serban Jasinschi, Rudolf Mathias Johannes Nicolaas Lamerichs, Peter Boernert
Abstract: In a conventional phase-contrast X-ray imaging system, a source grating G0 generates an array of partially coherent line sources which illuminate an object and thereafter phase grating G1. The periodicity in the phase grating is self-imaged at certain instances further away from the X-ray source and sampled by a mechanically movable third absorptive analyzer grating G2 before the demodulated fringe intensity is detected by a conventional X-5 ray detector. This application proposes to directly demodulate the fringe intensity using a structured scintillator having a plurality of slabs in alignment with sub-pixels of an optical detector layer, in combination with electronic signal read-out approaches. Therefore, a mechanically movable third absorptive analyzer grating G2 can be omitted from a phase-contrast X-ray imaging system.
Type:
Grant
Filed:
August 3, 2018
Date of Patent:
January 21, 2020
Assignee:
KONINKLIJKE PHILIPS N.V.
Inventors:
Roger Steadman Booker, Ewald Roessl, Walter Ruetten
Abstract: A radio-frequency (RF) coil apparatus for magnetic resonance (MR) systems (100, 200, 300, 400, 500, 600, 700, 900, 1000) includes a base (102, 502, 702, 902, 1002) having opposed sides (121), a surface (124) to support an object of interest (OOI) for scanning, and fasteners (127) situated at the opposed sides, A positioner (104, 304A, 304B, 504, 604, 704, 1004) is configured to be releasably attached to the base and has a body (130) extending between opposed ends and fasteners (134,) situated at the opposed ends of the body, The body is configured to form an arch between the opposed ends. An upper section (106, 606, 706, 906, 1006) has at least one RF coil array (142) for acquiring induced MR signals, and is configured to be positioned over the positioner.
Type:
Grant
Filed:
October 11, 2016
Date of Patent:
January 21, 2020
Assignee:
Koninklijke Philips N.V.
Inventors:
George Randall Duensing, Ron Kosal, Tracy Wynn, Olli Tapio Friman
Abstract: The invention relates to a system for zooming an image displayed in a viewport, wherein the image comprises a plurality of regions, each region of the plurality of regions having a zoom function associated with the region, the system comprising an input unit for receiving a region input for selecting a region of the plurality of regions and for receiving a zoom input for zooming the image, and a zoom unit for zooming the image based on the zoom input, using the zoom function associated with the selected region. The zoom function associated with each region of the plurality of regions may be defined in any way deemed useful. For example, it may be defined in such a way that the selected region or an interesting portion of it is displayed in the viewport or, vice versa, the selected region or an interesting portion thereof is removed from the displayed view of the image.
Type:
Grant
Filed:
November 3, 2017
Date of Patent:
January 21, 2020
Assignee:
Koninklijke Philips N.V.
Inventors:
Iwo Willem Oscar Serlie, Rudolph Martherus
Abstract: A multi-channel transmit/receive radio frequency (RF) system for a magnetic resonance examination system with an RF antenna array includes multiple antenna elements and an RF power supply to supply electrical RF power to the antenna elements. Directional couplers are circuited between respective antenna elements and a power distributor. A monitoring module is configured to measure forward electrical wave amplitude(s) and reflected electrical wave amplitude(s) at individual directional couplers. An arithmetic module is configured to compute individual coil element currents on the basis of the measured forward and reflected electrical wave amplitudes.