Patents Assigned to Korea Institute of Science and Technology
  • Patent number: 10850270
    Abstract: Disclosed is a method for preparing a carbon-supported metal oxide and/or alloy nanoparticle catalyst. According to the method, a carbon-supported metal oxide and/or alloy nanoparticle catalyst is prepared by depositing metal oxide and/or alloy nanoparticles on a water-soluble support and dissolving the metal oxide and/or alloy nanoparticles deposited on the water-soluble support in an anhydrous polar solvent containing carbon dispersed therein to support the metal oxide and/or alloy nanoparticles on the carbon. The anhydrous polar solvent has much lower solubility for the water-soluble support than water and is used to dissolve the water-soluble support.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: December 1, 2020
    Assignees: Korea Institute of Science and Technology, Global Frontier Center for Multiscale Energy Systems
    Inventors: Sung Jong Yoo, Injoon Jang, So Young Lee, Hyun Seo Park, Jin Young Kim, Jong Hyun Jang, Hyoung-Juhn Kim
  • Patent number: 10854886
    Abstract: A method for preparing a carbon-supported, platinum-cobalt alloy, nanoparticle catalyst includes mixing a solution containing, in combination, a platinum precursor, a transition metal precursor consisting of a transition metal that is cobalt, carbon, a stabilizer that is oleyl amine, and a reducing agent that is sodium borohydride to provide carbon-supported, platinum-cobalt alloy nanoparticles, and washing the carbon-supported, platinum-cobalt alloy, nanoparticles using ethanol and distilled water individually or in combination followed by drying at room temperature to obtain dried carbon-supported, platinum-cobalt alloy, nanoparticles; treating the dried carbon-supported, platinum-cobalt alloy, nanoparticles with an acetic acid solution having a concentration ranging from 1-16M to provide acetic acid-treated nanoparticles, and washing the acetic acid-treated nanoparticles using distilled water followed by drying at room temperature to obtain dried acetic acid-treated nanoparticles; and heat treating the dri
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: December 1, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Hyun Jang, Hee-Young Park, Jea-woo Jung, Hyoung-Juhn Kim, Dirk Henkensmeier, Sung Jong Yoo, Jin Young Kim, So Young Lee, Hyun Seo Park
  • Patent number: 10845798
    Abstract: Embodiments are directed to a mobile robot control apparatus for compensating an input delay time, which includes: a user input receiving unit configured to receive a user input for moving a mobile robot from an input device; a waypoint map estimating unit configured to generate an estimated waypoint map in which a waypoint vector is defined for each grid, based on the received user input; an area target determining unit configured to calculate a movable path along which the mobile robot is movable from a current position, and to determine a moving path of the mobile robot based on the calculated movable path and the waypoint vector of the estimated waypoint map; and a driving unit configured to move the mobile robot along the determined moving path, and its control method.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 24, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Jongsuk Choi, Jinhong Noh, Yoonseob Lim
  • Patent number: 10844503
    Abstract: A method for preparing a tightly sealed 3D lipid structure and a tightly sealed 3D lipid structure prepared thereby is disclosed. The method allows for simpler and more convenient preparation of an artificial biomembrane structure on a substrate using a lipid material, by using a plurality of transparent microwells formed on the substrate, and observation inside the microwells. In addition, a spherical 3D artificial single bilayer structure may be sealed very tightly through a simple method of changing the frequency of an electric field applied vertically to the microwells having a lipid layer formed. Through this, a biomimetic 3D structure having the structural and/or functional characteristics of a cell membrane constituting a cell can be provided more effectively.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 24, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Tae Song Kim, Dong-Hyun Kang
  • Patent number: 10843172
    Abstract: ABSTRACT OF THE DISCLOSURE A catalyst for electrochemical ammonia synthesis incudes a carbon carrier composed of carbon; and 20-65 wt% of iron, copper and sulfur, based on weight of the carbon, supported in the carbon carrier. The catalyst may be coated on an electrode selected from the group consisting of carbon paper, carbon cloth, carbon felt, fluorine- doped tin oxide (FTO) conducting glass, and combinations thereof by spray coating, screen printing or ink jet printing. The catalyst has an ammonia synthesis activity up to several times to several tens of times of the activity of the existing single metal or metal oxide catalysts. Thus, when using the catalyst, it is possible to provide a method for electrochemical ammonia synthesis having an improved ammonia production yield and rate.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: November 24, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyun Seo Park, Kahyun Hur, Min-Soek Kim, Jimin Kong, Jong Hyun Jang, Chang Won Yoon, Hyung Chui Ham, Suk Woo Nam, Jonghee Han, Ara Jo
  • Patent number: 10840533
    Abstract: This application relates to a separator for a fuel cell and a fuel cell stack with improved durability, which contains the same, particularly to a solid oxide fuel cell stack. Specifically, this application allows an oxidizer and a fuel to flow in a counter-flow manner and a cross-flow manner in the fuel cell stack by forming an outlet manifold and an inlet manifold to have a specific shape, location and size in the separator. As a result, interlayer peeling, microcracking, etc. are prevented because no variation in temperature, reactant concentration, power, etc. occurs between each unit cell and the power density per unit volume is significantly improved because the volume is minimized.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: November 17, 2020
    Assignees: Korea Institute of Science and Technology, Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jong Ho Lee, Kyung Joong Yoon, Sang Hyeok Lee, Yong Gyun Bae, Dong Hwan Kim, Jong Sup Hong
  • Patent number: 10840514
    Abstract: The present disclosure relates to an aqueous binder for a lithium-sulfur secondary battery, a method for preparing the same, and a lithium-sulfur secondary battery including the same. More particularly, it is possible to obtain an aqueous binder (PEI/PVP/CA, PPC) by adding citric acid to a mixed solution of polyethylene imine with polyvinyl pyrrolidone, and to apply the aqueous binder to a lithium-sulfur secondary battery having high discharge capacity, Coulombic efficiency and stable life characteristics through the improvement of adhesion capability even at a sulfur cathode with high energy density, inhibition of a shuttle reaction and inhibition of metal current collector corrosion.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: November 17, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Won Il Cho, Van Dung Do, Mun Sek Kim, In Wook Nah, Min Seop Kim
  • Publication number: 20200353247
    Abstract: The present disclosure relates to neural electrode technology for measuring a biosignal of a human or applying a neural signal to the human, and a neural electrode assembly includes a body that is inserted into a uterus in a non-invasive manner, a recording neural electrode formed to measure a uterine contraction-evoked neural signal, the recording neural electrode being coupled to the body, and a stimulating neural electrode formed to stimulate a nerve entering the uterus to suppress the uterine contraction, the stimulating neural electrode being coupled to the body.
    Type: Application
    Filed: November 29, 2018
    Publication date: November 12, 2020
    Applicants: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION, KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ki Hoon AHN, Soo Hyun LEE
  • Publication number: 20200354854
    Abstract: According to one aspect of the present invention, a method of producing a particle-shaped diamond single-crystal using chemical vapor deposition (CVD). According to one embodiment, the method includes disposing a single-crystal diamond grit seed on a stage substrate in a diamond synthesis chamber and three-dimensionally growing the single-crystal diamond grit seed to a particle-shaped diamond single-crystal by introducing a source gas into the chamber.
    Type: Application
    Filed: April 29, 2020
    Publication date: November 12, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae Kap LEE, Kwang Koo JEE
  • Patent number: 10829762
    Abstract: Provided are a method for preventing or treating obesity by using a composition including an inhibitor of expression of the Hoga1 gene or an inhibitor of activity of the Hoga1 protein as an active ingredient, and a method of screening a preventive or therapeutic agent for obesity by using the composition.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: November 10, 2020
    Assignees: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, INDUSTRY ACADEMIC COOPERATION FOUNDATION, HALLYM UNIVERSITY
    Inventors: Chu Won Nho, Myung Suk Kim, Chang Ho Jhin, Yoon Shin Cho, Yeongseon Ahn
  • Patent number: 10821421
    Abstract: A catalyst and a catalyst composition, a method for preparing thereof, and a method for synthesizing of hydrogen peroxide using them are provided. The catalyst and the catalyst composition contains: an alloy of two elements, wherein the elements are Pt (Platinum) and Ni (Nickel). The present disclosure enables (a) replacing a high-priced palladium (Pd) catalyst with a new catalyst, (b) providing a high-active catalyst which catalyzes the direct synthesis reaction of the hydrogen peroxide.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: November 3, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Seung Yong Lee, Sang Soo Han, Hyo Bin Nam, Byung Chul Yeo, So Hye Cho, Ho Seong Jang
  • Publication number: 20200339609
    Abstract: The present disclosure relates to a method for producing tetraalkoxysilane continuously through direction of silicon metal with alcohol. In the method, a basic catalyst prepared in the absence of a solvent is used. Thus, it is possible to increase the proportion of the catalyst in the process, and to minimize production of impurities caused by solvent decomposition. In addition, it is possible to improve reaction efficiency and to simplify the purification process as compared to the method based on direct reaction according to the related art, and thus to produce tetraalkoxysilane with significantly higher cost efficiency as compared to the related art.
    Type: Application
    Filed: April 29, 2020
    Publication date: October 29, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Bok Ryul Yoo, Daejin Kim
  • Publication number: 20200340001
    Abstract: The present disclosure relates to a vector pair for screening TDP-43 (TAR DNA-binding protein 43 or TransActive Response DNA-binding protein 43) oligomer formation, a cell line transfected with the vector pair, and a method of monitoring TDP-43 oligomer formation using the cell line. More specifically, the vector pair includes: a first vector including a first TDP-43 gene and a first fluorescence protein gene; and a second vector including a second TDP-43 gene and a second fluorescence protein gene, wherein a protein expressed from the first fluorescence protein gene and a protein expressed from the second fluorescence protein gene bind to each other to display fluorescence, by association between a protein expressed from the first TDP-43 gene and a protein expressed from the second TDP-43 gene. The vector pair is effective in that it makes it possible to monitor TDP-43 oligomer formation in living cells.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 29, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sung Su LIM, Seul Gi SHIN, Yun Kyung KIM
  • Publication number: 20200343429
    Abstract: Disclosed is a thermoelectric device in which a separate interlayer is inserted between a thermoelectric leg and an electrode to reduce the contact resistance between the thermoelectric leg and the electrode, so that the interlayer serves as a tunneling path between the thermoelectric leg and the electrode, facilitating the charge movements between the two materials, and the thermoelectric device according to an embodiment includes a substrate, a thermoelectric leg positioned on the substrate, an interlayer positioned on the thermoelectric leg, and including a plurality of interlayer materials chemically bonded with the thermoelectric leg, and an electrode positioned on the interlayer, and electrically connected to the thermoelectric leg.
    Type: Application
    Filed: August 29, 2019
    Publication date: October 29, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Seungjun Chung, Phillip Lee, Min Park, Sang-Soo Lee, Heesuk Kim, Jeong Gon Son, Jong Hyuk Park, Tae Ann Kim, Seongkwon Hwang, Inho Jeong
  • Publication number: 20200343404
    Abstract: An embodiment includes a method of texturing a semiconductor substrate, a semiconductor substrate manufactured using the method, and a solar cell including the semiconductor substrate, the method including: forming metal nanoparticles on a semiconductor substrate, primarily etching the semiconductor substrate, removing the metal nanoparticles, and secondarily etching the primarily etched semiconductor substrate to form nanostructures.
    Type: Application
    Filed: November 1, 2017
    Publication date: October 29, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Doh Kwon LEE, In Ho Kim, Won Mok Kim, Jong Keuk Park, Taek Sung Lee, Doo Seok Jeong, Hyeon Seung Lee, Jeung Hyun Jeong
  • Patent number: 10815565
    Abstract: A method for synthesizing a graphene pattern includes physically adhering a catalyst block including a catalyst material, which is a gamma-alumina thin film, to a portion of a growth substrate to form a flat interface between the catalyst block and the growth substrate; forming a graphene thin film selectively at the flat interface between the catalyst block and the growth substrate in an atmosphere including a carbon source and a growth inhibitor containing oxygen, and applying a force to physically separate the catalyst block from the graphene thin film and the growth substrate, wherein carbon atoms from the carbon source are diffused along the flat interface and the growth inhibitor is substantially blocked by a diffusion barrier formed by the flat interface so that the graphene thin film is selectively formed at the flat interface.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 27, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Jaehyun Park, Yumin Sim, Jaikyeong Kim
  • Patent number: 10815429
    Abstract: Provided is a method for deoxygenating an oxygenated hydrocarbon compound using a hydrogenation catalyst of immersing a metal in a carrier comprising a metal oxide and a hydrodeoxygenation catalyst of immersing a metal in a carrier comprising a metal oxide. It is possible to increase deoxygenation efficiency by combining the hydrogenation catalyst and the hydrodeoxygenation catalyst.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: October 27, 2020
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jeong Myeong Ha, Jangwoo Seo, Jae Wook Choi, Jong Min Park, Young Hyun Yoon, Dong Jin Suh, Jungho Jae, Gi Seok Yang
  • Patent number: 10814022
    Abstract: The present invention relates to a nanogel comprising a polyamine-based polymer cross-linked by oxamide bonds, a preparation method of the nanogel, a contrast agent for ultrasound imaging comprising the nanogel, a composition for ultrasound diagnosis of inflammatory diseases comprising the contrast agent, a preparation method of the contrast agent, and a method for providing information for diagnosis of inflammatory diseases using the composition for ultrasound diagnosis.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 27, 2020
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sehoon Kim, Chang-Keun Lim, Jeong yun Heo, Keunsoo Jeong
  • Patent number: 10818950
    Abstract: A composite polymer electrolyte membrane for a fuel cell may be manufactured by the following method: partially or totally filling the inside of a pore of a porous support with a hydrogen ion conductive polymer electrolyte solution by performing a solution impregnation process; and drying the hydrogen ion conductive polymer electrolyte solution while completely filling the inside of the pore with the hydrogen ion conductive polymer electrolyte solution by performing a spin dry process on the porous support of which the inside of the pore is partially or totally filled with the hydrogen ion conductive polymer electrolyte solution.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: October 27, 2020
    Assignees: GLOBAL FRONTIER CENTER FOR MULTISCALE ENERGY SYSTEMS, KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jin Young Kim, Kyung-jin Lee, Kyungah Lee, Nayoung Kim, So Young Lee, Sung Jong Yoo, Jong Hyun Jang, Hyoung-Juhn Kim, Jonghee Han, Suk Woo Nam, Tae Hoon Lim
  • Patent number: 10818922
    Abstract: An anode active material for a sodium ion secondary battery, a sodium ion secondary battery including an anode active material, and an electric device including the sodium ion secondary battery are disclosed. The anode active material for a sodium ion secondary battery includes a cobalt tin spinel oxide represented by Co2.4Sn0.6O4. The sodium ion secondary battery includes an anode made of an anode active material composed of a cobalt tin spinel oxide represented by Chemical Formula 1 below: Co2+xSn1-xO4,??Chemical Formula 1 where x is a real number satisfying 0?x?0.9; an electrolyte; and a cathode. The sodium ion secondary battery has high capacity characteristics. The electric device including the sodium ion secondary battery includes an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and an electric power storage system.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: October 27, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyung Yoon Chung, Hun-Gi Jung, Ji-Young Kim, Ghulam Ali, Mobinul Islam, Sang Ok Kim, Hyungseok Kim