Patents Assigned to KRIPYA LLC
  • Patent number: 11764702
    Abstract: Disclosed is an adaptable DC-AC inverter system and its operation. The system includes multiple DC input sources as input to provide a stable operation under various conditions. DC input sources may be added to the system or removed from the system without impacting the functionality of the system. The disclosed system is suited for solar energy harvesting in grid-connected or off-grid modes of operation.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: September 19, 2023
    Assignee: Kripya LLC
    Inventors: Vilakkudi G Veeraraghavan, Ramarao Ananathakrishnan, Asif Ismail, Murali Thangaraj, Thotakura Venkata Ravindra
  • Patent number: 11303221
    Abstract: Disclosed is a drive system and its operation for multiple DC-AC inverters working in parallel, for applications such as off-grid solar energy harvesting, which enables a stable operation under various load conditions. The disclosed drive system offers voltage and frequency synchronized sine wave output from each of the inverters, enabling stable operation of the entire system under differing load conditions.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: April 12, 2022
    Assignee: Kripya LLC
    Inventors: Vilakkudi G. Veeraraghavan, Ramarao Ananathakrishnan, Murali Thangaraj, Asif Ismail
  • Patent number: 10396563
    Abstract: A system and process of its operation for monitoring and managing load circuits connected to a renewable energy generation system are disclosed. A programmable load manger circuit continuously monitors the available energy from the generation system and manages the load circuits connected to the system in a manner such that the energy demand from the active load circuits is below the level of available energy. The load circuits can be prioritized and programmed such that the lower priority loads are deactivated prior to the higher priority loads when the available energy from the generation system is not sufficient to satisfy demand from all the active load circuits. When the renewable energy generation system incorporates more than one generator, a load balancing control algorithm, continuously monitoring the load connected to the system and allocates the load in a balanced manner to each of the generators in the system.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 27, 2019
    Assignee: Kripya LLC
    Inventors: Vilakkudi G. Veeraraghavan, Ramarao Ananathakrishnan, Muthiam S Balavenkataraman
  • Patent number: 9590528
    Abstract: A dual mode direct current-to-alternating current (DC-AC) inverter is capable of operating either with or without connection to an active external AC power source. The dual mode DC-AC inverter may operate in “current control mode” when connection to the active AC power source is present and may operate in “power control mode” when connection to the active external AC source is absent. Processes for operating an array of these DC-AC inverters are disclosed. The dual mode operation capability enables the DC-AC inverters to function both in the grid connected mode (i.e., current control mode) as well as off-grid mode (i.e., power control mode). The system is configured to sense the presence or absence of grid power and automatically select the appropriate mode of operation. For the power control mode of operation, a process may include designating a master from the array of DC-AC inverters in order to establish the voltage and frequency reference.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: March 7, 2017
    Assignee: Kripya LLC
    Inventors: Vilakkudi G. Veeraraghavan, Ramarao Ananathakrishnan, Muthiam S Balavenkataraman
  • Patent number: 9444366
    Abstract: A dual mode direct current-to-alternating current (DC-AC) micro-inverter is capable of operating either with or without connection to an active external AC power source. The dual mode DC-AC micro-inverter may operate in “current control mode” when connection to the active AC power source is present and may operate in “voltage control mode” when connection to the active external AC source is absent. Processes for operating an array of these micro-inverters are disclosed. The dual mode operation capability enables the micro-inverter(s) to function both in the grid connected mode (i.e., current control mode) as well as off-grid mode (i.e., voltage control mode). The system is configured to sense the presence or absence of grid power and automatically select the appropriate mode of operation. For the voltage control mode of operation, a process may include designating a master from the array of micro-inverters in order to establish the voltage and frequency references.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: September 13, 2016
    Assignee: Kripya LLC
    Inventors: Vilakkudi G. Veeraraghavan, Ramarao Ananathakrishnan, Muthiam S Balavenkataraman
  • Publication number: 20150295511
    Abstract: A dual mode direct current-to-alternating current (DC-AC) micro-inverter is capable of operating either with or without connection to an active external AC power source. The dual mode DC-AC micro-inverter may operate in “current control mode” when connection to the active AC power source is present and may operate in “voltage control mode” when connection to the active external AC source is absent. Processes for operating an array of these micro-inverters are disclosed. The dual mode operation capability enables the micro-inverter(s) to function both in the grid connected mode (i.e., current control mode) as well as off-grid mode (i.e., voltage control mode). The system is configured to sense the presence or absence of grid power and automatically select the appropriate mode of operation. For the voltage control mode of operation, a process may include designating a master from the array of micro-inverters in order to establish the voltage and frequency references.
    Type: Application
    Filed: February 6, 2015
    Publication date: October 15, 2015
    Applicant: KRIPYA LLC
    Inventors: Vilakkudi G. Veeraraghavan, Ramarao Ananathakrishnan, Muthiam S Balavenkataraman