Abstract: The invention relates to a machine (R) comprising a first member (1c), a rotatable second member (1c) rotatable relative to the first member (1c) relative to an axis (A), a control device (S), a drive connected with the control device (S) for moving the two members (1c, 1d) relative to one another, and a first Hall sensor (21) connected with the control device (S) and arranged on the first member (1c). On the second member (1d), a first, second and third magnet (31-33) are arranged next to each other on a common circular trajectory (14) such, that during a rotation of the two members (1c, 1d) relative to one another, the first Hall sensor (21) is located at a specific position (P) in the detection zone of the magnets (31-33). The second magnet (32) which is developed as the center magnet is facing towards the first Hall sensor (21) with another magnetic pole than the first and third magnet (31, 33).
Type:
Application
Filed:
April 11, 2012
Publication date:
October 18, 2012
Applicant:
KUKA ROBOTER GMBH
Inventors:
Gernot Nitz, Stefan Roth, Dietmar Tscharnuter
Abstract: In a robot system, and a method for operating a robot system, for loading general cargo units, a gripper unit of the robot is operated to stack the general cargo units in a stack, by movements controlled by a computerized control unit. In order to avoid unstable loading patterns, the computerized control unit automatically determines the loading pattern of the stack of general cargo units, and also automatically determines at least one characteristic that represents the stability of the loading pattern.
Abstract: The invention relates to a method for creating a robot model (17) of an industrial robot (1) which has a robotic arm (2) having a plurality of successive limbs (3-8) which are adjustable by means of drives (11-16) via transmissions (5) in relation to axes (A1-A2), controlled by a control device (10) of the industrial robot (1). According to the invention, the robotic arm (2) is moved in a plurality of poses. At least one of the limbs (4) is moved in the same first movement direction (18) by means of the drive (11) thereof at least upon approaching the individual poses. In order to obtain the robot model (17), the robotic arm (2) is measured at each of the poses thereof.
Type:
Application
Filed:
November 15, 2010
Publication date:
September 13, 2012
Applicant:
KUKA ROBOTER GMBH
Inventors:
Gernot Nitz, Dietmar Tscharnuter, Wolfgang Michel, Rene Rossig, Michael Muller
Abstract: A method for regulation of a multi-axis automated manipulator, in particular of a robot, includes flexible regulation of at least one guide axis, and rigid regulation of at least one additional axis, and determining a desired value of the at least one additional axis on the basis of a real value of the guide axis.
Abstract: The present invention relates to a method and a device for automatically stacking tires (4) on a support (1). According to the method, geometrical data of the tires (4) and/or a digital model of the tires (4) is provided, based on the geometrical data and/or the tire model and a predefinable size of the support (1), an algorithm calculates a stacking pattern for the tires (4) on the support (1) by taking into account a predefined size of the support, said stacking pattern making it possible to store the largest possible number of tires (4) in a stable manner on the support (1). Positional data of the tires (4) are adopted from the stacking pattern and associated trajectories of a handling device for stacking the tires (4) are generated and stored according to the stacking pattern.
Type:
Grant
Filed:
November 7, 2006
Date of Patent:
August 14, 2012
Assignee:
KUKA Roboter GmbH
Inventors:
Norbert Cottone, Daniel Kotzor, Torsten Albrecht, Martin Peghini
Abstract: The invention relates to methods for referencing a drive position of an electric drive (20) of at least one gripper half (14, 16) of a production gripper (10, 12) in a closed position of two gripper halves (14, 16) and a system of a production gripper (10, 12), in particular a welding tongs (12), clinch tongs or crimping tool and a respective control device for operating the production gripper (10, 12), which is set up to carry out such a method.
Abstract: To increase the safety of an articulated arm robot with robot members connected by means of joints as open kinematics and with functional elements acting on the joints, such as drive motors, gears, brakes and a weight balance system, while reducing the mechanical limitations of the motion space of the robot, the present invention provides that at least some of the said functional elements have a dual design.
Type:
Grant
Filed:
May 15, 2006
Date of Patent:
July 10, 2012
Assignee:
Kuka Roboter GmbH
Inventors:
Günther Merk, Joachim Markert, Rainer Krumbacher
Abstract: A transport system for piece goods includes a conveyor for moving the piece goods along a conveying path, an unloading device including a multi-axis manipulator for unloading piece goods from the conveyor, and a clearing tool. The clearing tool is moved relative to the conveyor by the multi-axis manipulator to discharge a piece good from the conveyor, and the movement of the clearing tool includes a directional component transverse to the direction of movement of the conveying path and a directional component in the direction of movement of the conveying path.
Abstract: The invention relates to a workpiece positioning device (1) comprising at least one positioning axis (35, 39) and a modular machine frame (3) on which at least one workpiece receiving element (8, 9) is arranged. At least one frame part (4, 5, 6, 7) comprises at least one frame module (15) provided, in turn, with a long carrier element (16) and at least one connection element (17, 18, 18?).
Type:
Grant
Filed:
November 25, 2005
Date of Patent:
February 21, 2012
Assignee:
KUKA Roboter GmbH
Inventors:
Elmar Nuchter, Erich Wiessensz, Jurgen Krass
Abstract: In a method to separate bundle layers by way of a first conveyor track and a second conveyor track whose conveyor speed is greater than the conveyor speed of the first conveyor track, bundles are spaced apart from one another in the transport direction by a speed jump between the first conveyor track and second conveyor track; positions of bundles on the second conveyor track that are spaced apart from one another are detected by a position detection device. The bundles are moved from the second conveyor track with a manipulator, wherein the manipulator is controlled on the basis of the detected bundle positions on the second conveyor track.
Abstract: The invention relates to a measuring device (20) for ascertaining a torque acting on an axis (A2,) and to a robot (1) with a robot arm (2) having a plurality of members which are rotatably mounted in reference to axes (A1-A6). The robot (1) also has the measuring device (20), in order to determine for at least one of the axes (A2) the torque exerted on that axis (A2).
Abstract: The invention relates to a manipulator (1) comprising a plurality of members (12, 14) connected to each other by joints (A1-A6) that can be adjusted by drives (M1-M6), and a counterweight device (15) associated with one of the joints (A1-A6) and comprising a rod (19) coupled to a first member (12) connected to the joint (A1-A6) on one side and connected to a spring device (26) supported on a seat (25) on the other side, said seat being coupled to a second member (14) connected to the joint (A1-A6) by means of at least one bearing arrangement (18), comprising a first bearing component (17) and a second bearing component (16) connected to the second member (14). The seat (25) is connected to the first bearing component (17) by means of at least one cantilevered arm (23, 24).
Abstract: The invention relates to an industrial robot (1) and to a path planning method for controlling the movement of an industrial robot (1), on the robot arm (2) of which an effector, particularly a remote laser welding device (9), is mounted, said effector being provided for the processing of process points at a predetermined distance (f) to a first defined point (8a) of the industrial robot (1).
Type:
Application
Filed:
October 5, 2009
Publication date:
September 15, 2011
Applicant:
KUKA ROBOTER GMBH
Inventors:
Christian Sonner, Martin Weiss, Uwe Zimmermann
Abstract: The invention relates to a method for collision-free path planning for an industrial robot (1) which has a control device (9) and a robot arm (2) that is movable with the aid of the control device (9), to which an object (11) is attached, and in whose working space at least one obstacle (12) is situated.
Abstract: The invention relates to a method for operating a telemanipulated medical robot (R) guided by hand or by means of an input device, to a telemanipulated medical robot (R) guided by hand or by means of an input device, and to a medical work place. The medical robot (R) comprises a robot arm (M) with a plurality of moveable axes (1-6) and a control device (17) for moving the axes (1-6) of the robot arms (M) by means of drives (11-16). The control device (17) is adapted to automatically change the work region (A) of the medical robot (R) due to a change of position, relative to a robot base (B) of the medical robot (R), of a living being (P) that is being treated by means of the medical robot (R) in such a way that the work region (A) of the medical robot (R) stays the same relative to the living being (P).
Type:
Application
Filed:
August 7, 2009
Publication date:
August 4, 2011
Applicant:
KUKA ROBOTER GMBH
Inventors:
Andreas Summerer, Thomas Neff, Tobias Ortmaier, Marc-Walter Ueberle
Abstract: The invention relates to a conducting line protection device for an industrial robot having at least one power line, having a basic ring section, a hollow cylinder section whose diameter is matched to an inside diameter of a pipe component of the industrial robot that rotates relative to the conducting line protection device, an inner edge rounding section whose rounding radius is matched to a diameter of the power line, and a radial bearing section for rotatable support of the conducting line protection device relative to the pipe component of the industrial robot. The invention also relates to an industrial robot having such a conducting line protection device.
Abstract: Disclosed is a robot-controlled optical measurement array (1) comprising an optical sensor (2) that is fastened to a spacer (3). Reference marks (22) are provided on the spacer (3) and/or on a sensor (2) housing (2?). Said optical measurement array (1) is calibrated by means of an auxiliary device (13) that is placed on the optical measurement array (1) and is provided with a sensor target (16) which is disposed on the auxiliary device so as to lie within one measurement space (17) of the optical sensor (2) when the optical measurement array (1) and the auxiliary device (13) are in the assembled state. In order to calibrate the optical measurement array (1), measured values of the sensor target (16) are generated with the aid of the sensors (2), said measured values being used for calculating the three-dimensional position of the sensor coordinate system (10) in relation to the sensor target (16).
Type:
Grant
Filed:
May 3, 2005
Date of Patent:
May 31, 2011
Assignee:
KUKA Roboter GmbH
Inventors:
Thomas Ibach, Bernhard Laubel, Matej Leskovar, Holger Linnenbaum, Martin Paskuda
Abstract: According to a method according to the invention for controlling at least one manipulator, in particular a robot, a plurality of control commands (P, B, F) are worked through, in that in a state machine (ZM) the respective command runs through an active state (-A), wherein in a state machine at least one control command runs through a preliminary state (-E) that is placed ahead of its active state and/or a post-operational state (-P) that is placed after its active state, and/or a plurality of control commands are processed at the same time.
Abstract: A method according to the invention for planning and/or controlling a robot application (1) on the basis of system and/or process parameters (M1, . . . M7, G1, . . . G7, B1, K1, S1, H1, W1, F1, U1, R1), includes these steps: storing parameter values, and planning and/or controlling the application on the basis of stored parameter values, wherein parameters are managed with the aid of a graph structure (FIG. 2).
Type:
Application
Filed:
November 18, 2010
Publication date:
May 26, 2011
Applicant:
KUKA ROBOTER GMBH
Inventors:
Thomas Bongardt, Dirk Jacob, Thomas Kohler, Klaus Schlickenrieder, Martin Weiss
Abstract: The invention relates to a medical robot (R) and a method for meeting the performance requirements of a medical robot (R). The robot (R) comprises several axes (1-6) and a controller (17). A medical tool (21 -24) is fixed to a fixing device (18) on the robot (R) and the working range (30) of the robot (R) is set by the controller (17) in particular with safe techniques such that the robot (R) meets the performance requirements of the medical tool (21-24).