Abstract: The invention relates to a machine comprising a first member, a rotatable second member rotatable relative to the first member relative to an axis, a control device, a drive connected with the control device for moving the two members relative to one another, and a first Hall sensor connected with the control device and arranged on the first member. On the second member, a first, second and third magnet are arranged next to each other on a common circular trajectory such, that during a rotation of the two members relative to one another, the first Hall sensor is located at a specific position in the detection zone of the magnets. The second magnet which is developed as the center magnet is facing towards the first Hall sensor with another magnetic pole than the first and third magnet.
Type:
Grant
Filed:
April 11, 2012
Date of Patent:
September 9, 2014
Assignee:
KUKA Roboter GmbH
Inventors:
Gernot Nitz, Stefan Roth, Dietmar Tscharnuter
Abstract: In order to determine a virtual sensor tool center point sensor TCP of a light section sensor, the invention provides that: the sensor TCP is placed in sufficient concordance with a point on a line on a surface a so-called feature of a reference part with a known location; a normal to the surface of the reference part is determined; the Z direction of the sensor is brought in concordance with the normal of the surface of the reference part, and; a defined alignment of the sensor with the line of the feature is determined.
Abstract: A handling system and method for automatically moving a gravity-based load body using a robot. The load body is supported by a load body holding means connected to an end effector flange of the robot. A gravity compensation device includes a connector element acting on an element or the end effector flange of the robot to compensate for the gravity of the load body.
Type:
Grant
Filed:
April 5, 2012
Date of Patent:
August 19, 2014
Assignee:
KUKA Roboter GmbH
Inventors:
Sven Brudniok, Günter Schreiber, Johann Maischberger
Abstract: The invention relates to a measuring device (20) for ascertaining a torque acting on an axis (A2,) and to a robot (1) with a robot arm (2) having a plurality of members which are rotatably mounted in reference to axes (A1-A6). The robot (1) also has the measuring device (20), in order to determine for at least one of the axes (A2) the torque exerted on that axis (A2).
Abstract: According to a method according to the invention for controlling a robot (1), in particular a human-collaborating robot, a robot- or task-specific redundancy of the robot is resolved, wherein, in order to resolve the redundancy, a position-dependent inertia variable (mn(?v(q))) of the robot is minimized.
Abstract: In a retention device, a medical robot and a method to set the tool center point of a medical robot, the retention device has a fixing device to fix the head of a person held by the retention device. The fixing device provides an indication of the position of the openings of the auditory canals of the ears of the person relative to the retention device based on the relation between the fixing device and the head of the person and the relation between the fixing device and the retention device.
Abstract: In a method and a computer system for controlling an industrial robot, multiple data packets are received by the computer system, each of the data packets having a destination address with different priority classes being associated therewith in advance by the computer system. A chronological association of tasks with the resources of the computer system is made for processing the individual received data packets, based on the relevant priority class of the destination address of a received data packet.
Abstract: A safety monitoring means for a robot assembly with at least one robot includes a configuration means for configuring a linking function arrangement with at least one first linking function including a fixed and predetermined number of monitoring functions of a monitoring function arrangement. The monitoring functions are logically linked to one another such that the first linking function has a reaction state whenever none of the monitoring functions indicates a not-violated state. The configuration means may further include at least one second linking function including a fixed and predetermined number of monitoring functions that are logically linked to one another such that the second linking function does not have a reaction state whenever all monitoring functions indicate a violated state.
Type:
Application
Filed:
January 9, 2014
Publication date:
July 10, 2014
Applicant:
KUKA Laboratories GmbH
Inventors:
Uwe Bonin, Jonas Rumping, Marc-Walter Ueberle, Christian Hartmann, Denis Pesotski, Botond Gorog, Giulio Milighetti, Robert Bertossi
Abstract: In a method for allowing an end effector of a robotic manipulator to travel along a predetermined path or trajectory, wherein the manipulator has a null space with respect to the predetermined trajectory with at least two manipulator positions associated with the same end effector position, a placement of the manipulator in null space is detected and, in a processor, a process variable of the end effector is automatically modified according to the detected placement.
Abstract: According to a method according to the invention for controlling a manipulator, in particular a robot (10), a planned path (z1(t)) of the manipulator is specified by a path generating device (1.1, 1.2, 1.3), a control path (z2(t)) is determined automatically on the basis of the planned path by a path conversion device (2), and the control path is traversed with the manipulator by a manipulator controller (3), with the path conversion device (2) determining curvature information (aij; t2(ti)) of the control path on the basis of curvature information (aij; t1(ti)) of the planned path.
Abstract: A method according to the present invention for changing of an operating mode of at least one industrial control (1-1) of a plurality of networked industrial controls (1-1, 1-2), in particular of a robot control, comprises the steps of: sending a first packet (I-1) via a network (3) of the networked industrial controls (1-1, 1-2); receiving said first packet (I-1) by a receiving means (1-1.1) of at least one industrial control; and changing of said industrial control from a first operating mode (A) into a second operating mode (H) on basis of said received first packet (I-1) if the first packet (I-1) is addressed to said industrial control, wherein in the first opening mode (I) and in the second operating mode (II) different groups of components (1.1-1, 1-1.3, 1-1.4, 1-1.5, 1-1.6) of the industrial control (1-1) are supplied with energy.
Abstract: The invention relates to an industrial robot, having a multiple-axis robot arm, with a base, a carousel that is rotatably supported relative to the base in reference to an axis and a mechanical stop device provided to limit a rotary motion of the carousel relative to the base. The stop device has a slider situated on the base, with stops situated at its ends, a trailing stop situated in the slider and a drive dog situated on the carousel. The drive dog and the slider are designed so that the drive dog is introduced into the slider by a corresponding rotary motion of the carousel relative to the axis and pushes the trailing stop against the relative stop. The trailing stop includes a plastically deformable damping element, which is provided to brake the carousel due to a plastic deformation caused by the trailing stop being pushed against the relevant stop by the drive dog.
Abstract: The invention is concerning a robotic arm that features several consecutive mobile links and motors associated with axes relative to one another for the moving of the links. At least one of the links is selectively mountable in at least two configurations relative to its adjacent links.
Abstract: A rotary coupling for a multi-axial robot hand (19) is provided with a rotatable hand housing (20) and an output element (21) that is rotatable on said housing. The rotary coupling (62) includes connections (65, 66, 68) for the output element (21), a tool (23) and an accessory unit (30). The tool (23) and the accessory unit (30) can be rotated relative to each other, and the accessory unit (30) can be coupled to the hand housing (20) or to the tool (23) or to the output element (21) via the rotary coupling (62). The rotary coupling (62) is provided for an application device (11) which is used to apply a sealant (8) on a lock seam (7) of an add-on piece (4) of a vehicle body (3).
Type:
Grant
Filed:
July 28, 2008
Date of Patent:
June 10, 2014
Assignee:
KUKA Systems GmbH
Inventors:
Gerhard Hartmann, Andreas Bernsau, Jürgen Radler
Abstract: The invention relates to a sterile barrier (S) for a surgical robot (1) comprising at least one joint (12 . . . 15) with two opposing joint members (40, 42) that rotate relative to one another about a common joint axis (16 . . . 19) and a torque sensor (29) comprising: at least two sterile barrier sections (24 . . . 28) each with an end section (38, 39) for sealed attachment to a respective joint end section (41, 43) of the joint member (40, 42); and a sealing arrangement (30) for producing a sterile and sealed rotating connection of the end sections (38, 39) of the at least two sterile barrier sections (24 . . . 28); and a surgical robot (1).
Type:
Grant
Filed:
January 20, 2009
Date of Patent:
June 3, 2014
Assignee:
KUKA Laboratories GmbH
Inventors:
Tobias Ortmaier, Dirk Jacob, Thomas Neff, Achim Heinze
Abstract: The invention relates to a method for testing the plausibility of output signals (u1, u2) of a resolver (21), by means of which an angular position of two elements (3-7) of a machine (R) can be determined in relation to each other.
Abstract: The invention relates to an industrial robot having a robotic arm. The robotic arm has several axes (A1-A6) and at least one electric drive, which comprises an electric motor (7-12) and power electronics (16) actuating the electric motor (7-12) and is equipped to move the relevant axis (A1-A6). The industrial robot (1) is equipped to short-circuit the electric motor (7-12) in the event of emergency braking simultaneously by means of two independent electric current paths.
Type:
Grant
Filed:
October 29, 2008
Date of Patent:
May 27, 2014
Assignee:
KUKA Laboratories GmbH
Inventors:
Josef Hofmann, Richard Schwarz, Sönke Marx
Abstract: Control programs for robotic systems are synchronized through the use of synchronization objects which control access to shared resources and allow for sequencing of events in separate program threads. Where necessary, partner objects generate between control programs and synchronization objects to assure uniform interaction between control program threads and synchronization objects. As all synchronization objects contain searchable partner lists, actual simulated and runtime deadlocks including any type of synchronization object can be detected, and the full system can be analyzed to identify potential deadlocks.
Abstract: For operating two operating systems of a computer without performance loss, the invention proposes a method in which a secondary operating system driver (SOS driver) of the primary operating system is loaded for loading and controlling the secondary operating system and which subsequently loads the secondary operating system. The invention also provides a device with a corresponding secondary operating system driver (SOS driver) of the primary operating system for driving a board support package.
Type:
Grant
Filed:
October 14, 2004
Date of Patent:
May 6, 2014
Assignee:
KUKA Laboratories GmbH
Inventors:
Andreas Groschel, Jorg Ehrlinspiel, Stefan Zintgraf
Abstract: An electronic power circuit, electrical machine and a method for verifying the functionality of an electronic power circuit. The invention relates to an electronic power circuit, an electrical machine with the electronic power circuit and a method for verifying the functionality of the electronic power circuit. The electronic power circuit comprises a power unit with at least one power semi-conductor switch, which is equipped to generate a pulsed electrical voltage for an electrical consumer from an electrical voltage on the basis of an alternating powering on and off of the at least one power semiconductor switch, and control electronics equipped to control the power semiconductor switch for the alternating powering on and off.