Patents Assigned to Kulite Semiconductor Products, Inc.
  • Patent number: 11467049
    Abstract: Header construction and techniques are disclosed that utilize header layers that provide support for electrical interconnections. A sensor header assembly includes: an upper header layer having upper through holes arranged in a first configuration; a lower header layer having lower through holes arranged in a second configuration axially offset relative to the first configuration; depressions extending from the lower header layer top surface and partially through the lower header layer, each depression defining a footprint corresponding to the first configuration of the corresponding upper through holes of the upper header layer; upper header pins extending through the corresponding upper through holes and at least partially into the corresponding lower level depressions; and lower header pins extending through the corresponding lower through holes and in electrical communication with the corresponding upper header pins.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: October 11, 2022
    Assignee: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: Alexander A. Ned, Scott Goodman
  • Patent number: 11441962
    Abstract: The invention includes differential pressure transducer assembly systems and methods in which headers are configured with header pins that extend perpendicular with respect to an axis of the assembly and through header sidewalls, enabling a compact configuration, ease of assembly, enhanced reliability and/or redundancy. Channels and ports defined in a housing portion of the assembly are configured to enable the use of substantially straight tubing sections for routing main and/or reference pressures to one or more differential sensing elements mounted on the headers. Two or more headers with associated sensing elements can be stacked to provide redundant differential pressure sensing.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: September 13, 2022
    Assignee: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: Robert Gardner, Louis DeRosa
  • Patent number: 11433654
    Abstract: This disclosure provides systems and methods for a fluid-filled pressure sensor assembly for higher pressure environments. A fluid-filled pressure sensor assembly may be adapted for coupling to a structure at a mating surface and may include a header; a pressure sensor coupled to the header; a diaphragm coupled to the header and configured for positioning forward of the mating surface so that a fluid region is disposed between the diaphragm and the pressure sensor; a fill hole coupled to the fluid region; a sealing element coupled to the fill hole and configured for positioning forward of the mating surface; and wherein during operation the first pressure applied at the diaphragm is substantially transferred by the fluid in the fluid region and the fill hole to an inner-side of the sealing element and the first pressure is about equivalent to a second pressure applied at an outer-side of the sealing element.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: September 6, 2022
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Robert Gardner, Louis DeRosa, Richard Martin
  • Patent number: 11359985
    Abstract: The disclosed technology includes an oil-filled pressure transducer assembly and an oil-filled compensating sensing element disposed near one another and attached to a common housing. The oil-filled pressure transducer assembly may receive and measure pressure media via a first oil-filled cavity and a protective diagram in communication with the pressure media. The compensating sensing element may be isolated from the pressure media. In certain example implementations, the compensating sensing element is configured to measure certain common error phenomena that are also measured by the oil-filled pressure transducer assembly, for example, due to acceleration, temperature, and/or vibration. In certain implementations, the signal measured by the compensating sensing element may be subtracted from the signal measured by the oil-filled pressure transducer assembly to provide a compensated output signal.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: June 14, 2022
    Assignee: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: Alexander A. Ned, Sorin Stefanescu, Andrew Bemis, Scott Goodman
  • Patent number: 11280693
    Abstract: A reconfigurable pressure transducer assembly having an input tube filter assembly is provided. Multiple small inlet apertures of the transducer housing or input tube filter assembly may be utilized to filter particulate matter from the measurement media/fluid. The resonant frequency and dampening characteristics of the pressure transducer assembly may be configured by the input tube filter assembly such that temporary clogging of a portion of the small inlet apertures does not appreciably affect the resonant frequency and dampening characteristics. The input tube filter assembly includes one or more inserts disposed in an input tube channel, the one or more inserts including one or more apertures of selectable dimensions and extending therethrough from a first end to a second end. The one or more inserts define at least a filter aperture, and the input tube filter assembly is tunable by selection of the selectable dimensions of the one or more inserts.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: March 22, 2022
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Louis DeRosa, Robert Gardner
  • Patent number: 11255718
    Abstract: Certain implementations of the disclosed technology may include systems and methods for extending a frequency response of a transducer. A method is provided that can include receiving a measurement signal from a transducer, wherein the measurement signal includes distortion due to a resonant frequency of the transducer. The method includes applying a complementary filter to the measurement signal to produce a compensated signal, wherein applying the complementary filter reduces the distortion to less than about +/?1 dB for frequencies ranging from about zero to about 60% or greater of the resonant frequency. The method further includes outputting the compensated signal.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: February 22, 2022
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Joe VanDeWeert, Adam Hurst, Joseph Carter, Douglas R. Firth, Alan R. Szary
  • Patent number: 11187606
    Abstract: The disclosed technology is a pressure transducer with a bleed valve built into the body of the transducer for purging liquid systems. The transducer assembly includes a body, a bleed valve port defined in the body and configured to accept a bleed valve, an interface port attached to the body, an adapter attached to a portion of the interface port, a header attached to the adapter and the body, a pressure transducer mounted to the header, and an internal cavity in communication with the interface port, the pressure transducer, and the bleed valve port. The bleed valve port is configured to vent a gas from the internal cavity. A bleed valve disposed in the bleed valve port is configured to controllably vent a gas from the internal cavity.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 30, 2021
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Louis DeRosa, Elias Geras, Robert Gardner
  • Patent number: 11162862
    Abstract: A pressure transducer is disclosed that includes an absolute pressure sensor assembly, a differential pressure sensor assembly, a main pressure port in communication with the absolute pressure sensor assembly and the differential pressure sensor assembly, a reference pressure port in communication with the differential pressure sensor assembly, and a compensation circuit in communication with the absolute pressure sensor assembly and the differential pressure sensor assembly. The compensation circuit is configured to reduce an error in an output of the differential pressure sensor assembly (due to absolute pressure) by at least a portion of an output received from the absolute pressure sensor assembly.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: November 2, 2021
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Wolf S. Landmann, Louis DeRosa
  • Patent number: 11060935
    Abstract: A reconfigurable pressure transducer assembly having an input tube filter assembly is provided. The resonant frequency and dampening characteristics associate with the pressure transducer assembly may be configured by the input tube filter assembly. The input tube filter assembly includes one or more inserts disposed in an input tube channel, the one or more inserts including one or more bores of selectable dimensions and extending therethrough from a first end to a second end. The one or more inserts define an effective input tube bore, and the input tube filter assembly is tunable by selection of the selectable dimensions of the one or more inserts.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: July 13, 2021
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Louis DeRosa, Robert Gardner
  • Patent number: 10969289
    Abstract: The disclosed technology relates to a field serviceable pressure scanner suitable for high-pressure sensing applications and replacement of large pressure transmitter panels. The pressure scanner includes a housing having a mounting plate comprising a plurality of through-hole bores extending from a front to back side for mating with corresponding transducer ports of the pressure sensors, and a plurality of input ports disposed on the front side of the mounting plate and in communication with the corresponding plurality of through-hole bores. The pressure scanner assembly includes two or more field-replaceable (swappable) pressure sensors seal mounted to the back side of the mounting plate, each pressure sensor comprising one or more sensor ports, each of the one or more sensor port in communication with corresponding through-hole bores in the mounting plate, and a multi-channel data acquisition system configured to receive pressure signals from the two or more field-replaceable pressure sensors.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: April 6, 2021
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Louis DeRosa, Joseph R. VanDeWeert, Steve Kleiber
  • Patent number: 10942076
    Abstract: The invention is an improved sensor assembly including a housing; a first header and a second header coupled to the housing; a first transducer coupled to the first header and a second transducer coupled to the second header. The first transducer is configured to measure a first pressure to generate a first pressure signal. The second transducer is configured to measure a second pressure to generate a second pressure signal. The first transducer and the second transducer are positioned in the housing such that a first temperature of the first transducer is about equivalent to a second temperature of the second transducer during operation of the sensor assembly.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: March 9, 2021
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Louis DeRosa, Robert Gardner, Richard Martin
  • Patent number: 10871415
    Abstract: Systems and methods are disclosed for packaging sensors for use in high temperature environments. In one example implementation, a sensor device includes a header; one or more feedthrough pins extending through the header; and a sensor chip disposed on a support portion of the header. The sensor chip includes one or more contact pads. The sensor device further includes one or more wire bonded interconnections in electrical communication with the respective one or more contact pads and the respective one or more feedthrough pins. The sensor device includes a first sealed enclosure formed by at least a portion of the header. The first sealed enclosure is configured for enclosing and protecting at last the one or more wire bonded interconnections and the one or more contact pads from an external environment.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: December 22, 2020
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Alexander A. Ned, Leo Geras, Sorin Stefanescu
  • Patent number: 10837854
    Abstract: The disclosed technology includes a transducer assembly having a first transducer element. The transducer assembly includes a first filter element adjacent to least of portion of the first transducer element such that a first cavity is defined between the first filter element and the first transducer element. The first filter element includes a plurality of machined passageways in communication with the first cavity. The transducer assembly also includes an inlet passage having a first end in communication with a first external portion of the transducer assembly and a second end in communication with the plurality of machined passageways.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: November 17, 2020
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Robert Gardner, Louis DeRosa
  • Patent number: 10825719
    Abstract: A method for fabricating silicon-on-insulator (SOI) semiconductor devices, wherein the piezoresistive pattern is defined within a blanket doped layer after fusion bonding. This new method of fabricating SOI semiconductor devices is more suitable for simpler large scale fabrication as it provides the flexibility to select the device pattern/type at the latest stages of fabrication.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: November 3, 2020
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Alexander A. Ned, Sorin Stefanescu, Joseph R. VanDeWeert
  • Patent number: 10788386
    Abstract: Header construction and techniques are disclosed that utilize header layers that provide support for electrical interconnections. A sensor header assembly includes: an upper header layer having upper through holes arranged in a first configuration; a lower header layer having lower through holes arranged in a second configuration axially offset relative to the first configuration; depressions extending from the lower header layer top surface and partially through the lower header layer, each depression defining a footprint corresponding to the first configuration of the corresponding upper through holes of the upper header layer; upper header pins extending through the corresponding upper through holes and at least partially into the corresponding lower level depressions; and lower header pins extending through the corresponding lower through holes and in electrical communication with the corresponding upper header pins.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 29, 2020
    Assignee: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: Alexander A. Ned, Scott Goodman
  • Patent number: 10768068
    Abstract: A pressure scanner assembly having at least one replaceable sensor plate, wherein each of the replaceable sensor plates has at least one pressure sensor adapted to transmit a signal substantially indicative of a sensed pressure condition. A memory chip, which stores correction coefficients for each of the pressure sensor to compensate for thermal errors, may be installed on each of the replaceable sensor plates. The signals from the pressure sensors are multiplexed and may be outputted in analog or digital form. The pressure scanner assemblies described herein have sensor plates that can be interchanged with other sensor plates of the same or different pressure range without disrupting the electronic configuration of the pressure scanner assembly or having to recalibrate and/or update the memory chip installed thereon.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 8, 2020
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Richard Martin, Louis DeRosa, Joseph R. VanDeWeert
  • Patent number: 10749516
    Abstract: Systems and methods are disclosed for a two lead electronic switch adapted to replace a mechanical switch. In one embodiment, a device is provided that includes a sensor and an electronic circuit having a voltage limiting circuit. The electronic circuit is configured to deactivate/activate the voltage limiting circuit to operate the electronic circuit in a first/second state in response to determining that an output of the sensor is less/more than a threshold voltage. The circuit includes first and second terminals configured to receive a switch voltage used to provide power for the device. The device sets the switch voltage to a first voltage level operative to power the electronic circuit and the sensor while the electronic circuit is operating in the first state and to a second voltage level operative to power the electronic circuit and the sensor while the electronic circuit is operating in the second state.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: August 18, 2020
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Wolf S. Landmann
  • Patent number: 10697827
    Abstract: Certain implementations of the disclosed technology may include systems and methods for extending a frequency response of a transducer. A method is provided that can include receiving a measurement signal from a transducer, wherein the measurement signal includes distortion due to a resonant frequency of the transducer. The method includes applying a complementary filter to the measurement signal to produce a compensated signal, wherein applying the complementary filter reduces the distortion to less than about +/?1 dB for frequencies ranging from about zero to about 60% or greater of the resonant frequency. The method further includes outputting the compensated signal.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: June 30, 2020
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Joe VanDeWeert, Adam Hurst, Joseph Carter, Douglas R. Firth, Alan R. Szary
  • Patent number: 10656036
    Abstract: The present invention provides a self-heated pressure sensor assembly and method of utilizing the same. The self-heated pressure sensor assembly regulates and maintains the temperature of the pressure sensor, regardless of the external temperature environment, without an external heater as in prior art embodiments. Exemplary embodiments of the pressure sensor assembly incorporate a resistance heater that is built into the sensing chip of the pressure sensor assembly. The pressure sensor assembly also utilizes the resistance of the pressure sensing elements to monitor the temperature of the assembly, which works alongside the resistance heater to maintain a stable temperature within the pressure sensor assembly.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: May 19, 2020
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Wolf S. Landmann, Joseph R. VanDeWeert
  • Patent number: 10634570
    Abstract: Systems and methods are disclosed for a switched, multiple range sensor system including multiple transducers. In one embodiment, a method is provided that includes receiving and measuring at a first transducer and a second transducer, a pressure to generate a respective first and second pressure signal; amplifying the first and second pressure signals with corresponding first and second fixed-gain amplifier to generate first and second amplified pressure signals; selecting for monitoring, the first or second amplified pressure signal; converting the selected amplified pressure signal to an intermediate digital pressure signal; measuring, at a thermal sensor associated with the selected amplified pressure signal, a temperature; compensating, based on the measured temperature, the intermediate digital pressure signal to generate a compensated digital pressure output signal; and outputting the compensated digital pressure output signal.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: April 28, 2020
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Joseph VanDeWeert, Haig Norian