Patents Assigned to Kulite Semiconductor Products, Inc.
  • Patent number: 9105752
    Abstract: There is disclosed a high temperature pressure sensing system which includes a SOI, silicon carbide, or gallium nitride Wheatstone bridge including piezoresistors. The bridge provides an output which is applied to an analog to digital converter also fabricated using SOI, silicon carbide, or gallium nitride materials. The output of the analog to digital converter is applied to microprocessor, which microprocessor processes the data or output of the bridge to produce a digital output indicative of bridge value. The microprocessor also receives an output from another analog to digital converter indicative of the temperature of the bridge as monitored by a span resistor coupled to the bridge. The microprocessor has a separate memory coupled thereto which is also fabricated from SOI, silicon carbide, or gallium nitride materials and which memory stores various data indicative of the microprocessor also enabling the microprocessor test and system test to be performed.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: August 11, 2015
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Wolf S. Landmann, Joseph R. VanDeWeert, Alexander A. Ned
  • Publication number: 20150204749
    Abstract: This disclosure provides example methods, devices, and systems for a sensor having thermal gradients. In one embodiment, a system may comprise a sensor assembly including a housing; a first header and a second header coupled to the housing; a first transducer coupled to the first header, wherein the first transducer is configured to measure a first pressure to generate a first pressure signal; a second transducer coupled to the second header, wherein the second transducer is configured to measure a second pressure to generate a second pressure signal; and wherein the first transducer and the second transducer are positioned in the housing such that a first temperature of the first transducer is about equivalent to a second temperature of the second transducer during operation of the sensor assembly.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 23, 2015
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Louis DeRosa, Robert Gardner, Richard Martin
  • Publication number: 20150204746
    Abstract: This disclosure provides example methods, devices, and systems for compensating a sensor having thermal gradients.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 23, 2015
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Andrew Bemis, Timothy Nunn, Joseph R. VanDeWeert
  • Patent number: 9080927
    Abstract: A pressure transducer assembly that uses static pressure compensation to capture low-level dynamic pressures in high temperature environments. In one embodiment, a method comprises receiving, at a first tube, a pressure, wherein the pressure includes a static pressure component and a dynamic pressure component; receiving, at a micro-filter, the pressure; filtering, by the micro-filter, at least a portion of the dynamic pressure component of the pressure; outputting, from the micro-filter, a filtered pressure; receiving, at a first surface of a first sensing element, the pressure; receiving, at a second surface of the first sensing element, the filtered pressure; measuring, by the first sensing element, a difference between the pressure and the filtered pressure, wherein the difference is associated with the dynamic pressure component of the pressure; and outputting, from the first sensing element, a first pressure signal associated with the dynamic pressure component of the pressure.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: July 14, 2015
    Assignee: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: Adam Hurst, Alexander A. Ned, Joseph R. VanDeWeert
  • Patent number: 9063027
    Abstract: A method, device and system for a gage pressure transducer including the making thereof are provided. In one embodiment, a method comprises receiving, at a first diaphragm, a first pressure, wherein the first diaphragm is composed of metal; transferring, from the first diaphragm, to a first sensor, the first pressure using a first oil region, wherein the first oil region is disposed between the first diaphragm and the first sensor; receiving, at the first sensor, the first pressure; measuring, by the first sensor, the first pressure to generate a first pressure signal; and outputting, from the first sensor, to a first header pin, the first pressure signal, wherein the first header pin is electrically coupled to the first sensor using a first conductive glass frit.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: June 23, 2015
    Assignee: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventor: Nora Kurtz
  • Patent number: 9027409
    Abstract: Exemplary embodiments of the present invention provide a differential pressure transducer that comprises first and second diaphragms of different configurations, i.e., different diameters and/or thicknesses. The pressure transducer provides more versatility over prior art designs as the diaphragms can be of different configurations yet still maintain substantially similar back pressures. Therefore, the errors commonly associated with back pressures are eliminated because the back pressures from the diaphragms ultimately cancel out in the sensor's differential pressure measurement.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 12, 2015
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Lou DeRosa, Robert Gardner
  • Patent number: 8984951
    Abstract: The present invention provides a self-heated pressure sensor assembly and method of utilizing the same. The self-heated pressure sensor assembly regulates and maintains the temperature of the pressure sensor, regardless of the external temperature environment, without an external heater as in prior art embodiments. Exemplary embodiments of the pressure sensor assembly incorporate a resistance heater that is built into the sensing chip of the pressure sensor assembly. The pressure sensor assembly also utilizes the resistance of the pressure sensing elements to monitor the temperature of the assembly, which works alongside the resistance heater to maintain a stable temperature within the pressure sensor assembly.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: March 24, 2015
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Wolf Landmann, Joseph R. VanDeWeert
  • Patent number: 8988184
    Abstract: A piezoresistive sensor device and a method for making a piezoresistive device are disclosed. The sensor device comprises a silicon wafer having piezoresistive elements and contacts in electrical communication with the elements. The sensor device further comprises a contact glass coupled to the silicon wafer and having apertures aligned with the contacts. The sensor device also comprises a non-conductive frit for mounting the contact glass to a header glass, and a conductive non-lead glass frit disposed in the apertures and in electrical communication with the contacts. The method for making a piezoresistive sensor device, comprises bonding a contact glass to a silicon wafer such that apertures in the glass line up with contacts on the wafer, and filling the apertures with a non-lead glass frit such that the frit is in electrical communication with the contacts.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: March 24, 2015
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Nora Kurtz
  • Patent number: 8978235
    Abstract: An oil-filled pressure transducer having reduced back pressure, comprising an alignment plate having a sensor accommodating aperture, a sensor module inserted into the sensor accommodating aperture, a header surrounding the alignment plate, the header having a protruding top surface, and a diaphragm disposed on the protruding top surface to create a relatively small oil accommodating region between the diaphragm and the sensor. This configuration reduces the oil volume required for operation, which ultimately reduces the back pressure applied against the diaphragm.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: March 17, 2015
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Anthony D. Kurtz
  • Patent number: 8975898
    Abstract: Disclosed herein is an electronic switch that comprises a pressure sensitive bridge array adapted to monitor pressure and activate an indicator when the monitored pressure exceeds a predetermined value indicative of a dangerous condition. The electronic switch further comprises a monitoring circuit adapted to test the overall operability of the pressure sensitive bridge array and its accompanying electronics control circuitry.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: March 10, 2015
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Wolf Landmann, Nora Kurtz
  • Patent number: 8910524
    Abstract: A gage/differential pressure transducer assembly having enhanced output capabilities, comprising a first pressure port adapted to communicate a first pressure to a first sensor, the first sensor comprising a first Wheatstone bridge adapted to output a first signal indicative of the first pressure, wherein the first pressure is a main pressure; and a second pressure port adapted to communicate a second pressure to a second sensor, the second sensor comprising a second Wheatstone bridge adapted to output a second signal indicative of the second pressure, wherein the second pressure is a reference pressure; and an output port connected to the first Wheatstone bridge and the second Wheatstone bridge for outputting a third signal representative of the difference between the first and second pressures.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: December 16, 2014
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Andrew Bemis, Timothy Nunn
  • Patent number: 8863582
    Abstract: A pressure transducer assembly including: a pressure sensor header; a transducer assembly member; and a joining arrangement disposed at an interface of the header and the transducer assembly member, for joining the header with the transducer assembly member, the joining arrangement including: a recessed female joining element formed in one of the header and the transducer assembly member; and a protruding male joining element formed on the other of the header and the transducer assembly member, the male joining element received in the female joining element.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: October 21, 2014
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Nora Kurtz
  • Publication number: 20140295201
    Abstract: Systems and method for controlling the flow and dissipation of thermal energy away from a weld between two components are provided. in one example embodiment, a structure may comprise a protrusion; a first component thermally coupled to the protrusion; a second component having a lower heat dissipation rate than the first component; a weld formed using a welding process to couple the protrusion to the second component, wherein the welding process generates thermal energy; and wherein the first component in combination with the protrusion dissipates the thermal energy from the welding process at about an equivalent rate as the second component.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Richard Martin, Louis DeRosa, Robert Gardner
  • Publication number: 20140260645
    Abstract: An example embodiment of the present invention provides a differential piezoresistive sensor assembly and method of manufacturing and using the same, such that a first and second pressure are applied from a single side there enabling easier installation in many pressure assemblies.
    Type: Application
    Filed: June 25, 2013
    Publication date: September 18, 2014
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Scott Goodman, Joseph R. VandeWeert, Alexander A. Ned
  • Publication number: 20140278185
    Abstract: An exemplary embodiment of the present invention provides systems and methods of compensating sensor drift. In one example embodiment, a system may comprise a primary sensor having a primary full-scale range and configured to output a primary environmental condition signal indicative of an environmental condition; a reference sensor having a reference full-scale range and configured to output a reference environmental condition signal indicative of the environmental condition, wherein the reference full-scale range is less than the primary full-scale range; and a drift compensation system configured to determine a drift compensation signal using the primary environmental signal and the reference environmental condition signal responsive to the reference environmental conditional signal being in the reference full-scale range and compensate the primary environmental condition signal using the drift compensation signal.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Kulite Semiconductor Products, Inc.
    Inventor: Wolf S. Landmann
  • Publication number: 20140273399
    Abstract: A method for fabricating silicon-on-insulator (SOI) semiconductor devices, wherein the piezoresistive pattern is defined within a blanket doped layer after fusion bonding. This new method of fabricating SOI semiconductor devices is more suitable for simpler large scale fabrication as it provides the flexibility to select the device pattern/type at the latest stages of fabrication.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: ALEXANDER NED, SORIN STEFANESCU, JOE VANDEWEERT
  • Publication number: 20140268593
    Abstract: This disclosure provides example methods, devices, and systems for a flexible interconnect structure for a sensor assembly. In one configuration, a flexible interconnect structure may couple a first portion of a differential sensor structure to a second portion of the differential sensor structure. Further, the flexible interconnect structure may couple the differential sensor structure to an external component such as a circuit board, used to receive measurement information from the differential sensor.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: LOU DEROSA, ROBERT GARDNER
  • Publication number: 20140260519
    Abstract: A method, device, or system is provided for improving dynamic pressure measurements. In one embodiment, a method comprises receiving, at a filter structure having a restricting tube, an input pressure having a static pressure (PS), a lower-frequency dynamic pressure (PLD) and a higher-frequency dynamic pressure (PHD); filtering, by the restricting tube, the input pressure to substantially pass an output pressure having the static pressure (PS), the lower-frequency dynamic pressure (PLD), and an attenuated higher-frequency dynamic pressure (PHD); and outputting, from the filter structure, the output pressure.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: Adam Hurst, Joseph R. VanDeWeert, Scott Goodman, Boaz Kochman
  • Publication number: 20140269835
    Abstract: A method, device, and system for improved measurement of fluid temperatures are provided. In one embodiment, a temperature probe structure comprises a header having a cavity; a longitudinal probe disposed at least partially within the cavity of the header; a temperature detector disposed within the longitudinal probe; and an insulator disposed between the header and the longitudinal probe for insulating the longitudinal probe from the header.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: ROBERT GARDNER, Louis DeRosa
  • Patent number: 8833180
    Abstract: An improved header assembly and corresponding port assembly comprising a tensioning member, wherein the tensioning member is isolated and separate from the weld portion and is adapted to place a threaded portion between the header assembly and port assembly in tension and maintain such tension, and thus relieve tension from the weld, before and after welding, thereby increasing the lifespan of the header and port assemblies.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: September 16, 2014
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Sergio Radossi, Adam Kane