Abstract: An integrated paper having capabilities and functionalities provided by both the fiber and the active agent ingredients, and a method of immobilizing the active agents within the integrated paper. A tight pore structure with a mean pore diameter of less than about 2 microns provides short diffusion distances from a fluid to the surface of the paper ingredients by adsorption or diffusive interception, making it an excellent medium for fluid filtration. A microbiological interception enhancing agent may be added. The integrated paper may be formed using wet laid paper-making processes. Devices utilizing the integrated paper are used in fluid filtration.
Abstract: A filter for removing soluble, colloidal, and insoluble particles from a fluid, including lead using a first filter media for filtering soluble material from the fluid, a second filter media, adjacent and in fluid communication with, the first filter media, for filtering soluble material from said fluid, wherein the first and second filter media create a physical non-soluble particle barrier at their interface for capturing non-soluble particles, that when retained at the interface, become soluble over time in the fluid, and are subsequently removed by the second filter media. At least one of the filter media can be fibrillated nanofibers that are loaded with finely subdivided media of powdered ion exchange resins. A third filter media may be placed between the first and second filter media to enhance capturing and dissolving the physical non-soluble particles.
Type:
Application
Filed:
July 22, 2008
Publication date:
July 30, 2009
Applicant:
KX TECHNOLOGIES LLC
Inventors:
John H. Schroeder, Kenneth DeRosa, Andrew W. Lombardo, Nichole Pennisi, Peter A. Yarnell
Abstract: A process for making fibrillated fibers includes preparing a fluid suspension of fibers, low shear refining the fibers at a first shear rate to create fibrillated fibers having a reduced CSF, and subsequently higher shear refining the fibers at a second shear rate, higher than the first shear rate, to increase the degree of fibrillation of the fibers. The refining at the first shear rate may be with a rotor at a first maximum shear rate and the refining at the second shear rate may be with a rotor at a second maximum shear rate, higher than the first maximum shear rate. The process may further include pre-treating the fibers by high shear refining with impact to stress the fibers prior to low shear refining.
Abstract: A filter assembly for fluid filtration having a push-activated lock and release mechanism. The filter housing has a sump for enclosing the filter media, a filter head, and at least one standoff protruding outwards for use in securing the filter head to a filter manifold. The filter manifold supports the filter housing with a filter locator. A filter guide having a rotator actuating mechanism secures and holds the filter head in place when the filter head is axially inserted. The rotator actuating mechanism has tabs and slots that rotate upon a transverse axial force from the standoff and from tabs on an internal shutoff. The internal shutoff has an inlet extension and an outlet extension with apertures for fluid ingress and egress. The internal shutoff tabs slidably contact and align the rotator actuating mechanism to secure and remove the filter head.
Abstract: A composite of the present invention comprises a substrate having deposited on a surface thereof a dry mixture of active particles, lofting fibers, and binder particles. The composite has increased air permeability and lower air resistance than prior art composites that do not incorporate lofting fibers.
Abstract: A filtering apparatus having two distinct filter media for filtering circulating fluid in a circulation system. A portion of the fluid entering the filter passes through a first filter media, while a reduced portion of the fluid entering the filter passes through a second filter media. The second filter media accumulates contaminants and suspended particles from the circulating fluid. The filter media is capable of including at least one additive for treating the circulating fluid. Due to the reduced volumetric fluid flow through the second filter media, the additive can be slowly administered to the circulating fluid over a long period of time. The two filter media may be housed in a dual-canister, where the second filter media may be removed and replaced without removing the first filter media.
Abstract: Structures treated with a microbiological interception enhancing agent comprising of a water-soluble cationic material having a counter ion associated therewith at specific sites on the cationic material, in combination with a biologically active metal salt, wherein the counter ion associated with the cationic material preferentially precipitates with at least a portion of the cation of the biologically active metal salt such that precipitation of the biologically active metal cation and the counter ion associated with the cationic material occurs in proximity to the cationic material are disclosed herein. The microbiological interception enhancing agent may be incorporated into articles of commerce by treating the starting materials of the structure or by applying the microbiological interception enhancing agent on to at least one surface of the article.
Abstract: A filter housing having radial sealing means is disclosed herein. Push-button actuated clamps can be used to attach the head to the sump for easy opening and closing the filter housing when replacing the filter cartridge. The filter housing of the present invention provides simplified filter cartridge changes to minimize process downtime and without recourse to tools.
Abstract: Carbon or activated carbon nanofibers are made from fibrillated nanofibers having a Canadian Standard Freeness of less than about 100, and/or a fiber diameter of less than or equal to about 400 nm. BET surface areas are greater than about 800 m2/g The fibrillated nanofibers can be made into a precursor paper and subjected to heat treatment to form carbon or activated carbon nanofiber sheets. A method of making is disclosed wherein carbonization occurs at a temperature of less than about 600° C. Activation occurs at temperatures greater than about 875° C. in less than or equal to about 30 minutes in an oxidizing atmosphere. Single step carbonization and activation in an oxidizing atmosphere is also disclosed. The carbon nanofibers or structures made therefrom are useful as filter media providing efficient adsorption and interception of microbiological contaminants due to the microporous carbon nanofiber structure.
Abstract: Structures treated with a microbiological interception enhancing agent comprising of a water-soluble cationic material having a counter ion associated therewith at specific sites on the cationic material, in combination with a biologically active metal salt, wherein the counter ion associated with the cationic material preferentially precipitates with at least a portion of the cation of the biologically active metal salt such that precipitation of the biologically active metal cation and the counter ion associated with the cationic material occurs in proximity to the cationic material are disclosed herein. The microbiological interception enhancing agent may be incorporated into articles of commerce by treating the starting materials of the structure or by applying the microbiological interception enhancing agent on to at least one surface of the article.
Abstract: A tangential air filter configuration is designed for applications where there is a potential for a pollutant to back flush out. The tangential in-line air filter reduces air resistance and prevents back flow, allowing the air to traverse through a forced air system during operation without resistance, and absorbs particulates and prevents back flow of fuel vapors when the forced air is at a standstill. The filter medium has a plurality of pleats or corrugations with a longitudinal axis parallel to the forced airflow direction. A diffusion barrier is formed when the forced air is at a standstill. Vapors are not passed or forced through the filter medium; rather pollutants are aggressively absorbed during diffusion.