Patents Assigned to Kyma Technologies, Inc.
  • Patent number: 9263266
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: February 16, 2016
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Publication number: 20150200256
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Application
    Filed: April 4, 2013
    Publication date: July 16, 2015
    Applicant: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Patent number: 9082890
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: July 14, 2015
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Patent number: 8871556
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 28, 2014
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Publication number: 20140162441
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 12, 2014
    Applicant: Kyma Technologies, Inc.
    Inventors: Edward Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 8637848
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 28, 2014
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Publication number: 20130264569
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Application
    Filed: December 6, 2012
    Publication date: October 10, 2013
    Applicant: KYMA TECHNOLOGIES, INC.
    Inventor: Kyma Technologies, Inc.
  • Patent number: 8435879
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: May 7, 2013
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward A. Preble, Denis Tsvetkov, Nathaniel Mark Williams, Xueping Xu
  • Patent number: 8349711
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: January 8, 2013
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 8202793
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: June 19, 2012
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Denis Tsvetkov, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 7897490
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: March 1, 2011
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Publication number: 20100327291
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Application
    Filed: November 30, 2006
    Publication date: December 30, 2010
    Applicant: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 7777217
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: August 17, 2010
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Denis Tsvetkov, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 7727874
    Abstract: Non-polar or semi-polar (Al, Ga, In)N substrates are fabricated by re-growth of (Al, Ga, In)N crystal on (Al, Ga, In)N seed crystals, wherein the size of the seed crystal expands or is increased in the lateral and vertical directions, resulting in larger sizes of non-polar and semi-polar substrates useful for optoelectronic and microelectronic devices. One or more non-polar or semi-polar substrates may be sliced from the re-grown crystal. The lateral growth rate may be greater than the vertical growth rate. The seed crystal may be a non-polar seed crystal. The seed crystal may have crystalline edges of equivalent crystallographic orientation.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: June 1, 2010
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew David Hanser, Edward Alfred Preble, Lianghong Liu, Terry Lee Clites, Keith Richard Evans
  • Publication number: 20090081857
    Abstract: Non-polar or semi-polar (Al, Ga, In)N substrates are fabricated by re-growth of (Al, Ga, In)N crystal on (Al, Ga, In)N seed crystals, wherein the size of the seed crystal expands or is increased in the lateral and vertical directions, resulting in larger sizes of non-polar and semi-polar substrates useful for optoelectronic and microelectronic devices. One or more non-polar or semi-polar substrates may be sliced from the re-grown crystal. The lateral growth rate may be greater than the vertical growth rate. The seed crystal may be a non-polar seed crystal.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 26, 2009
    Applicant: Kyma Technologies, Inc.
    Inventors: Andrew David Hanser, Edward Alfred Preble, Lianghong Liu, Terry Lee Clites, Keith Richard Evans
  • Publication number: 20070138505
    Abstract: In a method for making a low-defect single-crystal GaN film, an epitaxial nitride layer is deposited on a substrate. A first GaN layer is grown on the epitaxial nitride layer by HVPE under a growth condition that promotes the formation of pits, wherein after growing the first GaN layer the GaN film surface morphology is rough and pitted. A second GaN layer is grown on the first GaN layer to form a GaN film on the substrate. The second GaN layer is grown by HVPE under a growth condition that promotes filling of the pits, and after growing the second GaN layer the GaN film surface morphology is essentially pit-free. A GaN film having a characteristic dimension of about 2 inches or greater, and a thickness normal ranging from approximately 10 to approximately 250 microns, includes a pit-free surface, the threading dislocation density being less than 1×108 cm?2.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 21, 2007
    Applicant: Kyma Technologies, Inc.
    Inventors: Edward Preble, Lianghong Liu, Andrew Hanser, N. Williams, Xueping Xu
  • Publication number: 20070141823
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 21, 2007
    Applicant: Kyma Technologies, Inc.
    Inventors: Edward Preble, Denis Tsvetkov, Andrew Hanser, N. Williams, Xueping Xu
  • Patent number: 6692568
    Abstract: A method utilizes sputter transport techniques to produce arrays or layers of self-forming, self-oriented columnar structures characterized as discrete, single-crystal Group III nitride posts or columns on various substrates. The columnar structure is formed in a single growth step, and therefore does not require processing steps for depositing, patterning, and etching growth masks. A Group III metal source vapor is produced by sputtering a target, for combination with nitrogen supplied from a nitrogen-containing source gas. The III/V ratio is adjusted or controlled to create a Group III metal-rich environment within the reaction chamber conducive to preferential column growth. The reactant vapor species are deposited on the growth surface to produce single-crystal MIIIN columns thereon. The columns can be employed as a strain-relieving platform for the growth of continuous, low defect-density, bulk materials.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: February 17, 2004
    Assignee: Kyma Technologies, Inc.
    Inventors: Jerome J. Cuomo, N. Mark Williams, Andrew David Hanser, Eric Porter Carlson, Darin Taze Thomas