Abstract: A method and a system for ion chromatography are disclosed. The system includes a small capacity suppressor column for suppressing the conductivity of the eluant carrying the ionic species being tested. The size of the suppressor column permits regeneration of the suppressor column between each sample tested to provide accurate and precise test results for every sample. The method permits regeneration of the suppressor column during the loading of each sequential sample to prevent impairment to productivity.
Abstract: A system for performing chemical analyses includes at least two analyzers and at least one peripheral device capable of serving either analyzer. A control system is coupled to the analyzers and to the peripheral device and selectively commands the peripheral device to serve one or the other of the analyzers depending upon the analyses requested for each analyzer and the analytical method applied. A control system providing sharing of peripheral devices in such a system is also provided, as is a method for performing chemical analyses wherein a peripheral device is shared by analyzers. The system permits simultaneous and asynchronous analysis for a variety of analytes while reducing the physical space occupied by the system and the idle time of both the analyzers and the peripheral devices.
Abstract: A microdistillation method for the quantitative steam distillation of cyanide, phenolic compounds, hydrogen fluoride, ammonia, sulfites and other volatile analyte compounds from samples of environmental waters and sludge for their subsequent analysis involves volatilizing the water in the sample tube of a microdistillation column. The pressure which develops due to the water vapor forces all volatile compounds from the water sample, including the water itself, through a hydrophobic membrane and into the collector tube of the microdistillation column. The volatile compounds and the water vapor condense in the cooler collector tube and are quantitatively trapped and retained over the membrane. Relatively small samples may be distilled.
Abstract: A microdistillation column for the quantitative steam distillation of cyanide, phenolic compounds, hydrogen fluoride, ammonia, sulfites and other volatile analyte compounds from samples of environmental waters and sludge for their subsequent analysis involves volatilizing the water in the sample tube of the microdistillation column. The pressure which develops due to the water vapor forces all volatile compounds from the water sample, including the water itself, through a hydrophobic membrane and into the collector tube of the microdistillation column. The volatile compounds and the water vapor condense in the cooler collector tube and are quantitatively trapped and retained over the membrane. Relatively small samples may be distilled in the column.