Abstract: A coupler for coupling a linear fiber array to a spectrometer is provided, the coupler having a tube, a linear fiber bundle array inserted through the tube, an alignment mechanism for aligning the linear fiber bundle array with a slit on the spectrometer, and a locking mechanism for locking the linear fiber bundle array to the tube. Further, a method for coupling a linear fiber array to a spectrometer is provided, the method having the steps of inserting a linear fiber bundle array through a tube, aligning the linear fiber bundle array with a slit on the spectrometer, and locking the linear fiber bundle array to the tube once it is aligned with the slit on the spectrometer.
Abstract: A coupler for coupling a linear fiber array to a spectrometer is provided, the coupler having a tube, a linear fiber bundle array inserted through the tube, an alignment mechanism for aligning the linear fiber bundle array with a slit on the spectrometer, and a locking mechanism for locking the linear fiber bundle array to the tube. Further, a method for coupling a linear fiber array to a spectrometer is provided, the method having the steps of inserting a linear fiber bundle array through a tube, aligning the linear fiber bundle array with a slit on the spectrometer, and locking the linear fiber bundle array to the tube once it is aligned with the slit on the spectrometer.
Abstract: Automatic background signal removal for input data, such as for spectrometry data, is provided. Input data includes input pixel points, such as those read by a CCD spectrometer or chromatography device, and intensity values corresponding to the data points. A distribution of changes in the intensity values between the data points is determined, and a noise level is judged by setting a threshold for the distribution. A noise region is identified as a predetermined number of consecutive input points for which the changes in the intensity values are within the noise level. Adjacent noise regions may be connected and the background signal is thus determined and subtracted. A spike noise region may also be identified and filtered, such that a peak obtained from fewer than a second predetermined number of the pixel points is determined as a spike, not a true peak. Non-spike large amplitude noises are optionally filtered.
Abstract: Automatic background signal removal for input data, such as for spectrometry data, is provided. Input data includes input pixel points, such as those read by a CCD spectrometer of chromatography device, and intensity values corresponding to the data points. A distribution of changes in the intensity values between the data points is determined, and a noise level is judged by setting a threshold for the distribution. A noise region is identified as a predetermined number of consecutive input points for which the changes in the intensity values are within the noise level. Adjacent noise regions may be connected and the background signal is thus determined and subtracted. A spike noise region may also be identified and filtered, such that a peak obtained from fewer than a second predetermined number of the pixel points is determined as a spike, not a true peak. Non-spike large amplitude noises are optionally filtered.
Abstract: A laser system comprising a laser for providing a laser beam, a non-linear optical crystal in the laser beam path creating a second order light, a laser beam expander in the beam path after the non-linear crystal, a dichromatic mirror in the beam path after the beam expander, an objective lens that focuses the laser beam on a sample and collects transmission from the sample before the sample transmission impacts the dichromatic mirror, a partial reflector of the second order light in the transmission path after the dichromatic mirror, and a coupler for coupling an optical component to the sample transmission.
Type:
Grant
Filed:
January 28, 2004
Date of Patent:
September 13, 2005
Assignee:
Lambda Solutions, Inc.
Inventors:
Wang Long Zhou, Yongwu Yang, Victor S. Sapirstein, Shaoqing Peng