Patents Assigned to LAMBDA-X
  • Publication number: 20230417626
    Abstract: Method for conversion of a measurement of an lens (1) comprising the following steps: receiving an experimental lens measurement (EXP) of the lens (1) from a light measurement of the lens (1); determining from the experimental lens measurement (EPX) a digital lens model representing the lens (1) (Si); determining, based on the digital lens model, a converted digital lens measurement (SIM2) representing a converted lens measurement of the lens (1) (S2); determining, based on the experimental lens measurement (EXP1) and the converted digital lens measurement (SIM2), a measurement result (CON) for the lens (1) (S3).
    Type: Application
    Filed: November 5, 2021
    Publication date: December 28, 2023
    Applicant: Lambda-X
    Inventors: Luc BOUSSEMAERE, Philippe ANTOINE, Arno BOUWENS, Luc JOANNES
  • Publication number: 20220187161
    Abstract: A system for measuring (200) a sample (2) by deflectometry comprising: a source (10) for generating a light beam in a source plane (105); an illumination module (19) for forming an illumination beam (9) comprising: a first converging optical element (18); a first selection optical element (16) with a first aperture (160); reflective matrix optical modulation means (30) to form a pattern (7), said first aperture (160) being configured to control the angles of said illumination beam (9) on said reflective matrix optical modulation means (30); a Schlieren lens (20) for obtaining an angle-intensity encoding of said pattern (7) on the sample (2); imaging (40) and detecting means (50) for detecting an image of said sample (2).
    Type: Application
    Filed: April 24, 2020
    Publication date: June 16, 2022
    Applicant: LAMBDA-X
    Inventors: Philippe Antoine, Didier Beghuin, Luc Joannes
  • Patent number: 9671287
    Abstract: Described herein is a hyperspectral imaging system in which a polarizing beam splitter, a Wollaston prism, an optical system, and a plane mirror are arranged on an optical axis of the imaging system. An imaging detector is provided on which radiation is focused by an imaging lens. The Wollaston prism is imaged on itself by the optical system and the plane mirror so that translation of the Wollaston prism in a direction parallel to a virtual split plane of the prism effectively provides an optical path length difference that is the same for all points in the object field.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: June 6, 2017
    Assignee: LAMBDA-X
    Inventor: Didier Beghuin
  • Publication number: 20150355027
    Abstract: Described herein is a hyperspectral imaging system in which a polarising beam splitter, a Wollaston prism, an optical system, and a plane mirror are arranged on an optical axis of the imaging system. An imaging detector is provided on which radiation is focused by an imaging lens. The Wollaston prism is imaged on itself by the optical system and the plane mirror so that translation of the Wollaston prism in a direction parallel to a virtual split plane of the prism effectively provides an optical path length difference that is the same for all points in the object field.
    Type: Application
    Filed: January 24, 2014
    Publication date: December 10, 2015
    Applicant: LAMBDA-X
    Inventor: Didier Beghuin
  • Patent number: 8422822
    Abstract: The present invention relates to a Fourier transform deflectometry system (1) and method for the optical inspection of a phase and amplitude object (2) placed in an optical path between a grating (3) and an imaging system (4), at a distance h of said grating 3. The grating (3) forms a contrast-based periodic pattern with spatial frequencies ?0, v0 in, respectively, orthogonal axes x,y in an image plane, and the imaging system (4) comprises an objective (5) and an imaging sensor (6) comprising a plurality of photosensitive elements. Spatial frequencies ?0, v0 are equal or lower than the Nyquist frequencies of the imaging system in the respective x and y axes. According to the method of the invention, a first image of said pattern, distorted by the phase and amplitude object (2), is first captured through the objective (5) by the imaging sensor (6).
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: April 16, 2013
    Assignee: Lambda-X
    Inventors: Didier Beghuin, Luc Joannes
  • Publication number: 20100310130
    Abstract: The present invention relates to a Fourier transform deflectometry system (1) and method for the optical inspection of a phase and amplitude object (2) placed in an optical path between a grating (3) and an imaging system (4), at a distance h of said grating 3. The grating (3) forms a contrast-based periodic pattern with spatial frequencies ?0, v0 in, respectively, orthogonal axes x,y in an image plane, and the imaging system (4) comprises an objective (5) and an imaging sensor (6) comprising a plurality of photosensitive elements. Spatial frequencies ?0, v0 are equal or lower than the Nyquist frequencies of the imaging system in the respective x and y axes. According to the method of the invention, a first image of said pattern, distorted by the phase and amplitude object (2), is first captured through the objective (5) by the imaging sensor (6).
    Type: Application
    Filed: November 6, 2008
    Publication date: December 9, 2010
    Applicant: LAMBDA-X
    Inventors: Didier Beghuin, Luc Joannes
  • Patent number: D952158
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: May 17, 2022
    Assignee: LAMBDA-X S.A.
    Inventor: Luc Joannes