Abstract: A micro-network comprising includes at least two heating appliances provided with communication modules, one being used for obtaining and transmitting a first data set having at least one measurement related to the electricity consumption of the heating appliance, at least one measurement related to the electricity production of same and at least one measurement related to a state of charge of an electrical energy storage device, and subsequently controlling the power supply to the heating member. The other communication module is used for obtaining, and transmitting to a supervision module, first and second data sets including at least one item of data relating to an electrical power source, and subsequently transmitting a first setpoint state of charge related to the state of charge of the electrical energy storage device of the other heating device. The first setpoint state of charge is taken into account when controlling the power supply to the heating member.
Abstract: A heating appliance of the electric radiator type, including a housing containing a DC operated electrical energy storage device charged by an electrical power supply source outside the appliance, and at least one heating body that can be powered by the electrical power supply source and/or by the electrical energy storage device. The housing also comprises at least one air inlet arranged in a lower part of the housing to allow air to enter the space internally defined by the housing, and at least one air outlet arranged in an upper part of the housing to allow the air to leave the space. The electrical energy storage device is arranged across the air flow that circulates, in the space, from the at least one air inlet to the at least one air outlet, in a location situated, as observed in the direction of circulation of the flow, between the at least one air inlet and the at least one heating body.
Abstract: A heating appliance of the electric radiator type, including a housing containing a DC operated electrical energy storage device charged by an electrical power supply source outside the appliance, and at least one heating body that can be powered by the electrical power supply source and/or by the electrical energy storage device. The housing also comprises at least one air inlet arranged in a lower part of the housing to allow air to enter the space internally defined by the housing, and at least one air outlet arranged in an upper part of the housing to allow the air to leave the space. The electrical energy storage device is arranged across the air flow that circulates, in the space, from the at least one air inlet to the at least one air outlet, in a location situated, as observed in the direction of circulation of the flow, between the at least one air inlet and the at least one heating body.
Abstract: An electrical radiator type heating appliance comprises a case housing a heater member producing a first flow of calories (F1) when an input of the heater member is powered by a direct electric voltage. The heating appliance also comprises a voltage converter implanted in the case and comprising an input provided with connection elements for connecting the voltage converter to an electric power supply source and an output delivering a direct electric voltage adapted to directly or indirectly power the input of the heater member.
Type:
Grant
Filed:
November 24, 2017
Date of Patent:
July 13, 2021
Assignee:
LANCEY ENERGY STORAGE
Inventors:
Raphaël Meyer, Gilles Moreau, Antoine Romatier
Abstract: An apparatus includes a heating body and batteries. The batteries are grouped so as to form a battery bank having a parallelepiped shape which defines anterior and posterior faces of this bank. The heating body forms at least one face located along one of the anterior or posterior faces of the battery bank, or above the battery bank. The apparatus also includes a first thermal insulation plate placed between the battery bank and the heating body.