Patents Assigned to Landmark Graphic Corporation
  • Patent number: 11965997
    Abstract: Hydrocarbon exploration and extraction can be facilitated by determining fault surfaces from fault attribute volumes. For example, a system described herein can receive a fault attribute volume for faults in a subterranean formation determined using seismic data. The fault attribute volume may include multiple traces with trace locations. The system can determine a set of fault samples for each trace location. Each fault sample can include fault attributes such as a depth value, an amplitude value, and a vertical thickness value. The system can determine additional fault attributes such as a dip value and an azimuth value for each fault sample of each trace location. The system can determine fault surfaces for the faults using the fault samples and fault attributes. The system can then output the fault surfaces for use in a hydrocarbon extraction operation.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: April 23, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Xuan Nam Nguyen, Alejandro Jaramillo
  • Patent number: 11959374
    Abstract: System and methods for event prediction during drilling operations are provided. Regression data associated with coefficients of a predictive model are retrieved for a downhole event during a drilling operation along a planned path of a wellbore. The regression data includes a record of changes in historical coefficient values associated with prior occurrences of the event. As the wellbore is drilled over different stages of the operation, a value of an operating variable is estimated based on values of the coefficients and real-time data acquired during each stage. A percentage change in coefficient values adjusted between successive stages of the operation is tracked. An occurrence of the downhole event is estimated, based on a correlation between the percentage change tracked for at least one coefficient and a corresponding change in the historical coefficient values. The path of the wellbore is adjusted, based on the estimated occurrence of the event.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: April 16, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Mahdi Parak, Srinath Madasu, Egidio Marotta, Dale McMullin, Nishant Raizada
  • Patent number: 11959373
    Abstract: Aspects of the present disclosure relate to projecting control parameters of equipment associated with forming a wellbore, stimulating the wellbore, or producing fluid from the wellbore. A system includes the equipment and a computing device. The computing device is operable to project a control parameter value of the equipment using an equipment control process, and to receive confirmation that the projected control parameter value is within an allowable operating range. The computing device is also operable to adjust the equipment control process based on the confirmation, and to control the equipment to operate at the projected control parameter value. Further, the computing device is operable to receive real-time data associated with the forming of the wellbore, the stimulating of the wellbore, or the producing fluid from the wellbore. Furthermore, the computing device is operable to adjust the equipment control process based on the real-time data.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: April 16, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Keshava Rangarajan, Joseph Blake Winston, Srinath Madasu, Xi Wang, Yogendra Narayan Pandey, Wei Chiu, Jeffery Padgett, Aimee Jackson Taylor
  • Patent number: 11954567
    Abstract: According to some aspects, machine-learning models can be executed to classify a subsurface rock. Examples include training numerous machine-learning models using training data sets with different probability distributions, and then selecting a model to execute on a test data set. The selection of the model may be based on the similarity of each data point of the test data set and the probability distribution of each training class. Examples include detecting and recommending a pre-trained model to generate outputs predicting a classification, such as a lithology, of a test data set. Recommending the trained model may be based on calculated prior probabilities that measure the similarity between the training and test data sets. The model with a training data set that is most similar to the test data set can be recommended for classifying a physical property of the subsurface rock for hydrocarbon formation.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: April 9, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Jiazuo Zhang, Graham Baines
  • Patent number: 11952845
    Abstract: Gas bubble migration can be managed in liquids. In one example, a system can execute wellbore-simulation software to simulate changes in gas dissolution in a liquid over time. This may involve dividing the wellbore into segments spanning from the well surface to the downhole location, each segment spanning a respective depth increment between the well surface and the downhole location. Next, for each time, the system can determine a respective multiphase-flow regime associated with each segment of the plurality of segments based on a simulated pressure level, a simulated temperature, a simulated pipe eccentricity, and a simulated fluid velocity at the segment. The system can also determine how much of the gas is dissolved in the liquid at each segment based on the respective multiphase-flow regime at the segment. The system can display a graphical user interface representing the gas dissolution in the liquid over time.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: April 9, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Jianxin Lu, Michael T. Pelletier, Dale E. Jamison, Arash Haghshenas, Li Gao
  • Patent number: 11953641
    Abstract: A device comprises a processor; and a memory device including instructions that, when executed by the processor, cause the processor to: obtain, from a server, a plate model, wherein the plate model includes a plurality of geodynamic units (GDUs) representing a plurality of different geological regions; receive a user-defined geospatial data of a desired geological region; perform an intersection operation between the user-defined geospatial data and the plurality of GDUs of the plate model, to assign user-defined geospatial data a GDU identifier; obtain, from a server, Euler rotation poles based on a user-specified geological age, each Euler rotation pole being associated with a GDS via the GDU identifier; and reconstruct the user-defined geospatial data to the geological age using the Euler rotation pole and thereby obtain a reconstructed paleogeographic position of the user-defined geospatial data.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: April 9, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Alexander James Rushforth, Nilesh Ambadas Vyavahare, Jean-Christophe Wrobel-Daveau
  • Patent number: 11940581
    Abstract: A system can be provided for applying a dynamic filter to a velocity model for converting the domain of seismic data. The system can receive a velocity model for a geological area of interest. The system can apply a dynamic filter to the velocity model for smoothing an anomaly included in the velocity model. The system can apply the velocity model with the smoothed anomaly to seismic data associated with the geological area of interest for converting the domain of the seismic data.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: March 26, 2024
    Assignee: Landmark Graphics Corporation
    Inventor: William Fink
  • Patent number: 11940589
    Abstract: Turning points in stratigraphy (TPS) can be determined, which then can be used to improve the representation of the borehole path in relation to layers of the subterranean formation. The TPS can be determined by analyzing each directional survey point in relation to the nearest layer of the subterranean formation. In determining which layer is the nearest layer, the process can analyze the layer type, such as conformable or unconformable, whether a fault intersects the borehole, the angle of the layer in relation to the borehole path, or whether the true stratigraphic thickness (TST) changes from one of a positive parameter or negative parameter to the other. The generated TPS can be used by a system as input or can be displayed for a user where the segmented borehole path can be aligned using the calculated TST to improve the ability of the user to analyze the representation.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: March 26, 2024
    Assignee: Landmark Graphics Corporation, Inc.
    Inventors: Alice Butt, Mykhailo Ponomarev, Einar Mageroy
  • Publication number: 20240093605
    Abstract: The present disclosure is related to improvements in methods for evaluating and predicting responses of virtual sensors to determine formation and fluid properties as well as classifying the predicted as plausible or outlier responses that can indicate the need for maintenance of downhole physical sensors. In one aspect, a method includes detecting a change to a system of operating a wellbore to yield a determination, the system including a virtual sensor, the virtual sensor including a physical sensor placed in the wellbore for collecting one or more physical properties inside the wellbore; and based on the determination, performing one of retraining a machine learning model for predicting an output of the virtual sensor or predicting an output of the virtual sensor using the machine learning mode, the predicted output being indicative of at least one of sub-surface formation or fluid properties inside the wellbore.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 21, 2024
    Applicant: LANDMARK GRAPHICS CORPORATION
    Inventors: Travis St. George RAMSAY, Egidio MAROTTA, Srinath MADASU
  • Patent number: 11933162
    Abstract: A system may include a processing device and a memory device that includes instructions to receive real-time data including wellhead pressure, a new sand measurement, and a new erosion rate for a wellbore. A model including an available reference sand rate for the wellbore based on the wellhead pressure and at least one of the new sand measurement or the new erosion rate of the wellbore may be calibrated. The model may be applied to determine a calibrated sand rate is within a pre-determined threshold. A new sand production rate for the wellbore based on the model may be determined.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: March 19, 2024
    Assignee: Landmark Graphics Corporation
    Inventor: Raphael de Souza Gonzalez Melo
  • Patent number: 11927717
    Abstract: A method for history matching a reservoir model based on actual production data from the reservoir over time generates an ensemble of reservoir models using geological data representing petrophysical properties of a subterranean reservoir. Production data corresponding to a particular time instance is acquired from the subterranean reservoir. Normal score transformation is performed on the ensemble and on the acquired production data to transform respective original distributions into normal distributions. The generated ensemble is updated based on the transformed acquired production data using an ensemble Kalman filter (EnKF). The updated generated ensemble and the transformed acquired production data are transformed back to respective original distributions. Future reservoir behavior is predicted based on the updated ensemble.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: March 12, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Yevgeniy Zagayevskiy, Hanzi Mao, Harsh Biren Vora, Hui Dong, Terry Wong, Dominic Camilleri, Charles Hai Wang, Courtney Leeann Beck
  • Patent number: 11920455
    Abstract: A method for controlling computerized operations related to a wellbore comprises drilling the wellbore in a subsurface formation with a drill string including a drill bit. The method comprises acquiring a plurality of drilling parameters while drilling the wellbore. The method comprises determining, based on the plurality of drilling parameters, solids properties for solids forming a cutting plug up hole of the drill bit. The method comprises determining a length of the cutting plug based on the solids properties. The method comprises determining a cutting plug friction force based on the cutting plug length and a pressure differential across the cutting plug. The method comprises performing a drilling operation based on the cutting plug friction force.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: March 5, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Yuan Zhang, Robello Samuel, Zhengchun Michael Liu
  • Patent number: 11922103
    Abstract: The disclosed embodiments include a method, apparatus, and computer program product for improving production of an oil well. For example, one disclosed embodiment includes a system that includes at least one processor and at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations for generating a model of a wellbore in a wellbore simulator. The at least one processor further executes an algorithm that determines optimal parameters for inflow control devices (ICD) along a horizontal portion of the wellbore. The determined optimal parameters of the inflow control devices would yield a substantially uniform approach of at least one of water and gas along the horizontal portion of the wellbore.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: March 5, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Andrey Filippov, Vitaly Khoriakov
  • Patent number: 11906683
    Abstract: A method for correlating data comprises acquiring a first sequence signal and a second sequence signal, wherein the first sequence signal comprises at least a first data point including a first set of components and the second sequence signal comprises at least a second data point including a second set of components; acquiring a first set of user picks and a second set of user picks, wherein the first and the second sets of user picks each contain a respective first and second correspondence between a component in the first set of components and a component in the second set of components; combining the first and second sets of user picks with the first and second sequence signals to create a first hyper-complex signal and a second hyper-complex signal; and performing signal alignment on the first and second hyper-complex signals.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 20, 2024
    Assignee: Landmark Graphics Corporation
    Inventor: Marc Paul Servais
  • Patent number: 11905809
    Abstract: A system can determine a heterogeneity and a score for a reservoir for optimizing a drilling location. The system can receive a wireline log associated with a well that is positioned in a subterranean formation that includes a reservoir. The system can determine, using the wireline log, at least one statistical parameter for an interval of the well. The system can determine, using the at least one statistical parameter, a vertical heterogeneity of the reservoir. The system can determine, using the vertical heterogeneity, a score associated with the reservoir. The score can indicate an extraction difficulty and a carbon intensity of the reservoir. The system can output the score for optimizing a drilling location.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: February 20, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Andrew Davies, Michael Simmons, Lawrence Cowliff, Estanislao Nicolás Kozlowski
  • Patent number: 11906696
    Abstract: Systems and methods for modeling petroleum reservoir properties using a gridless reservoir simulation model are provided. Data relating to geological properties of a reservoir formation is analyzed. A tiered hierarchy of geological elements within the reservoir formation is generated at different geological scales, based on the analysis. The geological elements at each of the different geological scales in the tiered hierarchy are categorized. Spatial boundaries between the categorized geological elements are defined for each of the geological scales in the tiered hierarchy. A scalable and updateable gridless model of the reservoir formation is generated, based on the spatial boundaries defined for at least one of the geological scales in the tiered hierarchy.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: February 20, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Jeffrey Marc Yarus, Rae Mohan Srivastava, Yevgeniy Zagayevskiy, Jin Fei, Yogendra Narayan Pandey
  • Patent number: 11891882
    Abstract: Disclosed embodiments include methods and systems for classifying test data. In one embodiment a method includes determining one or more variable types in a multivariate test vector within a data set, and for a plurality of machine-learning models, determining a closest match between variable types used by (to train) the machine-learning models and the determined variable types for the test vector. In response to determining a closest match for one machine-learning model, a corresponding machine-learning model is selected and the test vector is classified using the selected model. In response to determining a closest match for multiple machine-learning models, a similarity is determined between a probability distribution for the test data set and the probability distributions for the multiple machine-learning models to generate similarity values for each of the models.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: February 6, 2024
    Assignee: Landmark Graphics Corporation
    Inventor: Jiazuo Zhang
  • Patent number: 11891889
    Abstract: A method for assessing an integrity of metal tubular structures may comprise receiving one or more inputs, applying an algorithm to automatically select an appropriate model for a given corrosion scenario, applying a combined model including semi-empirical and multiphase flow corrosion characteristics to the one or more inputs, determining one or more corrosion parameters of either an internal pipe wall, an external pipe surface, or both, applying a corrosion correlation value to the one or more corrosion parameters to produce one or more correlated corrosion parameters, and storing the one or more correlated corrosion parameters on a computer readable medium. A system may comprise an information handling system which may comprise at least one memory operable to store computer-executable instructions, at least one communications interface to access the at least one memory, and at least one processor.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: February 6, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Zhengchun Liu, Robello Samuel, Adolfo Gonzales, Yongfeng Kang
  • Patent number: 11885214
    Abstract: The disclosure presents solutions for determining a casing wear parameter. Image collecting or capturing devices can be used to capture visual frames of a section of drilling pipe during a trip out operation. The visual frames can be oriented to how the drilling pipe was oriented within the borehole during a drilling operation. The visual frames can be analyzed for wear, e.g., surface changes, of the drilling pipe. The surface changes can be classified as to the type, depth, volume, length, shape, and other characteristics. The section of drilling pipe can be correlated to a depth range where the drilling pipe was located during drilling operations. The surface changes, with the depth range, can be correlated to an estimated casing wear to generate the casing wear parameter. An analysis of multiple sections of drilling pipe can be used to improve the locating of sections of casing where wear is likely.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: January 30, 2024
    Assignee: Landmark Graphics Corporation, Inc.
    Inventors: Robello Samuel, Rishi Adari
  • Patent number: 11879316
    Abstract: A method may comprise: modeling a complex fracture network within the subterranean formation with a mathematical model based on a natural fracture network map and measured data of the subterranean formation collected in association with a fracturing treatment of the subterranean formation to produce a complex fracture network map; importing microseismic data collected in association with the fracturing treatment of the subterranean formation into the mathematical model; identifying directions of continuity in the microseismic data via a geostatistical analysis that is part of the mathematical model; and correlating the directions of continuity in the microseismic data to the complex fracture network with the mathematical model to produce a microseismic-weighted (MSW) complex fracture network map.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: January 23, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Jeffrey Marc Yarus, Ashwani Dev, Jin Fei, Trace Boone Smith