Abstract: Provided are a movable marking system, a method of controlling a movable marking apparatus, and a computer-readable recording medium. The movable marking system is a movable marking system that includes a movable marking apparatus, and includes: a data receiving unit for receiving marking data regarding a working surface; a marking unit for performing a marking operation on the working surface in response to the marking data; a sensing unit for scanning space targeted for scanning; and a scan condition setting unit for setting a movement path of the movable marking apparatus corresponding to the marking data, setting a scan position for scanning the space targeted for scanning by taking into account reference map data corresponding to the space targeted for scanning, and setting a scan angle of the sensing unit at the scan position.
Abstract: An autonomous working system, an autonomous working method, and a computer readable recording medium are provided. The autonomous working system includes a master working robot and at least one slave working robot, in which the master working robot including a data receiving unit to receive information on space targeted for working, a sensing unit to sense the space targeted for working, a sensing setting unit to set a movement path of the master working robot, a sensing position, and a sensing angle of the sensing unit, and a first position determination unit to determine a position of the master working robot by comparing sensing data obtained through the sensing unit at the sensing position with reference map data, and the at least one slave working robot includes a second position determination unit that determines the position of the at least one slave working robot.
Abstract: An autonomous working system, an autonomous working method, and a computer readable recording medium are provided. The autonomous working system includes a master working robot and at least one slave working robot, in which the master working robot including a data receiving unit to receive information on space targeted for working, a sensing unit to sense the space targeted for working, a sensing setting unit to set a movement path of the master working robot, a sensing position, and a sensing angle of the sensing unit, and a first position determination unit to determine a position of the master working robot by comparing sensing data obtained through the sensing unit at the sensing position with reference map data, and the at least one slave working robot includes a second position determination unit that determines the position of the at least one slave working robot.
Abstract: Provided are a movable marking system, a method of controlling a movable marking apparatus, and a computer-readable recording medium. The movable marking system is a movable marking system that includes a movable marking apparatus, and includes: a data receiving unit for receiving marking data regarding a working surface; a marking unit for performing a marking operation on the working surface in response to the marking data; a sensing unit for scanning space targeted for scanning; and a scan condition setting unit for setting a movement path of the movable marking apparatus corresponding to the marking data, setting a scan position for scanning the space targeted for scanning by taking into account reference map data corresponding to the space targeted for scanning, and setting a scan angle of the sensing unit at the scan position.
Abstract: An autonomous working system, an autonomous working method, and a computer readable recording medium are provided. The autonomous working system includes a master working robot and at least one slave working robot, in which the master working robot including a data receiving unit to receive information on space targeted for working, a sensing unit to sense the space targeted for working, a sensing setting unit to set a movement path of the master working robot, a sensing position, and a sensing angle of the sensing unit, and a first position determination unit to determine a position of the master working robot by comparing sensing data obtained through the sensing unit at the sensing position with reference map data, and the at least one slave working robot includes a second position determination unit that determines the position of the at least one slave working robot.