Patents Assigned to Lanxide Technology Company, LP
  • Patent number: 5185303
    Abstract: A self-supporting ceramic body produced by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
    Type: Grant
    Filed: November 14, 1991
    Date of Patent: February 9, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Robert C. Kantner, Michael A. Rocazella, Jerry G. Weinstein, Danny R. White
  • Patent number: 5185298
    Abstract: The present invention relates to a method of forming ceramic matrix composite bodies comprising a parent metal reacting with an oxidant to produce an oxidation reaction product which infiltrates a loose unbounded mass or a preform comprising a filler material mixture. Specifically, the filler material mixture used in the method of the present invention comprises a material having varying compositions, sizes and/or shapes of filler material within the mass or preform. By utilizing a filler possessing varying compositions, sizes and/or shapes, enhanced packing of the filler material is achieved which may result in improved properties, such as erosion resistance, corrosion resistance, etc. Further, the use of filler material containing varying sizes and/or shapes may also enhance the growth rate of oxidation reaction product, thereby reducing processing times for formation of the resultant ceramic composite body.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: February 9, 1993
    Assignee: Lanxide Technology Company, LP
    Inventor: Jack A. Kuszyk
  • Patent number: 5185297
    Abstract: Ceramic foams in which the open cells are connected by a three-dimensional, substantially continuous ceramic matrix formed of interconnected hollow ligaments, are made from an open-cell, reticulated precursor metal, i.e. a metal foam. The precursor metal first is treated so as to allow a support coating to form thereon, and thereafter the coated precursor is heated above the melting point of the metal in the presence of an oxidant to form an oxidation reaction product.
    Type: Grant
    Filed: October 28, 1991
    Date of Patent: February 9, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Eugene S. Park, Steven D. Poste
  • Patent number: 5180697
    Abstract: Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert filters admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: January 19, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Steven M. Mason, Kevin P. Pochopien, Danny R. White, William B. Johnson, Michael K. Aghajanian
  • Patent number: 5172747
    Abstract: The present invention relates to the formation of a metal matrix composite body by a spontaneous infiltration technique. Particularly, an infiltration enhancer and/or infiltration enhancer precursor can be positioned at least partially between or at an interface between a matrix metal and a filler material (or preform) which is to be infiltrated by molten matrix metal. Moreover, at least at some point during the process, an infiltrating atmosphere may be in communication with the filler material or preform and/or matrix metal.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: December 22, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Alan S. Nagelberg
  • Patent number: 5168081
    Abstract: A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal. The method includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surrounding bed of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated of the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold.
    Type: Grant
    Filed: September 23, 1991
    Date of Patent: December 1, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, H. Daniel Lesher
  • Patent number: 5165463
    Abstract: A metal matrix composite is formed by contacting a molten matrix alloy with a permeable mass of filler material or preform in the presence of an infiltrating atmosphere. Under these conditions, the molten matrix alloy will spontaneously infiltrate the permeable mass of filler material or preform under normal atmospheric pressures. Once a desired amount of spontaneous infiltration has been achieved, or during the spontaneous infiltration step, the matrix metal which has infiltrated the permeable mass of filler material or preform is directionally solidified. The directionally solidified metal matrix composite may be heated to a temperature in excess of the liquidus temperature of the matrix metal and quenched. This technique allows the production of spontaneously infiltrated metal matrix composites having improved microstructures and properties.
    Type: Grant
    Filed: May 9, 1990
    Date of Patent: November 24, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Robert C. Kantner, John Peter Biel, Jr., Kurt J. Becker
  • Patent number: 5166105
    Abstract: This invention relates generally to a novel method of preparing self-supporting bodies, and to novel products made thereby. In its more specific aspects, this invention relates to a method of producing self-supporting bodies comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide, by reactive infiltration of a molten parent metal actinide into (1) a bed or mass containing boron carbide and, optionally, (2) at least one of a boron donor material (i.e., a boron-containing material) and a carbon donor material (i.e., a carbon-containing material), (3) a bed or mass comprising a mixture of a boron donor material and a carbon donor material and, optionally, (4) one or more inert fillers in any of the above masses, to form the body.
    Type: Grant
    Filed: December 10, 1990
    Date of Patent: November 24, 1992
    Assignee: Lanxide Technology Company, LP
    Inventor: Paul V. Kelsey
  • Patent number: 5164233
    Abstract: The present invention relates to methods for producing self-supporting ceramic and ceramic composite bodies having a protective surface region on at least a portion of the surface of the formed bodies, and bodies produced thereby.
    Type: Grant
    Filed: October 29, 1991
    Date of Patent: November 17, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Birol Sonuparlak, Kenneth S. Hatton, Dennis J. Landini, Sylvia J. Canino, Michael K. Aghajanian
  • Patent number: 5164347
    Abstract: In a method for producing ceramic body by oxidation of a parent metal having a graded microstructure characterized by a plurality of zones differing from each other in one or more properties by altering the process conditions during formation of said ceramic body such that a zone of the oxidation reaction product formed posterior to said altering has one or more properties different from a zone of the oxidation reaction product formed anterior to said altering.
    Type: Grant
    Filed: September 23, 1991
    Date of Patent: November 17, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Christopher R. Kennedy, Andrew W. Urquhart, Danny R. White, Marc S. Newkirk, Jeffrey R. Ramberg
  • Patent number: 5163499
    Abstract: The present invention relates to the formation of a macrocomposite body by spontaneously infiltrating a permeable mass of filler material or a preform with molten matrix metal and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body and/or a metal or metal containing body. Particularly, an infiltration enhancer and/or infiltration enhancer precursor and/or infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Moreover, prior to infiltration, the filler material or preform is placed into contact with at least a portion of a second material such that after infiltration of the filler material or preform, the infiltrated material is bonded to the second material, thereby forming a sealable electronic package.
    Type: Grant
    Filed: May 9, 1990
    Date of Patent: November 17, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Danny R. White, Christopher R. Kennedy, Alan S. Nagelberg, Michael K. Aghajanian, Robert J. Wiener, Steven D. Keck, John T. Burke, Peter M. Engelgau, Cheng-Tsin Lee, Michael A. Rocazella
  • Patent number: 5163498
    Abstract: The present invention relates to a novel process for forming net or near net-shape metal matrix composite bodies. Particularly, a molten matrix metal is in contact with a filler material or a preform in the presence of a reactive atmosphere, at least at some point during the process, which permits molten matrix metal to react, at least partially or substantially completely, with the reactive atmosphere, thereby causing molten matrix metal to infiltrate the filler material or preform due to the creation of a self-generated vacuum. Forming a glassy seal on the reaction system, the self-generated vacuum infiltration occurs without the application of any external pressure or vacuum. The molten matrix metal infiltrates the filler material up to at least a portion of a provided barrier means.
    Type: Grant
    Filed: November 7, 1989
    Date of Patent: November 17, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Robert C. Kantner, Ratnesh K. Dwivedi
  • Patent number: 5162098
    Abstract: This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 -ZrC-Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
    Type: Grant
    Filed: May 7, 1991
    Date of Patent: November 10, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Gerhard H. Schiroky, William B. Johnson
  • Patent number: 5162273
    Abstract: Self-supporting ceramic composite bodies of desired shape are produced by infiltrating a permeable self-supporting preform with polycrystalline matrix material comprising an oxidation reaction product obtained by oxidation of a parent metal precursor, such as aluminum, and optionally containing therein metallic constituents. The composite body is formed by contacting a zone of a permeable self-supporting preform, having at least one defined surface boundary spaced from said contacting zone, with a body of molten metal which is reacted with a suitable vapor-phase oxidant to form an oxidation reaction product.
    Type: Grant
    Filed: February 25, 1991
    Date of Patent: November 10, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Shirley L. Zwicker
  • Patent number: 5158917
    Abstract: A method of producing shaped, self-supporting ceramic bodies includes preparing a mold by applying a permeable, conformable material to a shape-defining surface of an expendable pattern. The permeable, conformable material, when set or stable, provides a mold with a shaped surface which is defined by, and is therefore substantially congruent to, the shape-defining surface. Upon heating, the material of the expendable pattern combusts or volatilizes and thus establishes the shaped cavity mold. A molten parent metal is then vaporized with a vapor-phase oxidant in such a manner as to form a ceramic body which grows into the mold cavity, and is shaped by it. The ceramic body is recovered from the mold having a shaped surface replicating the shape-defining surface of the expandable pattern.
    Type: Grant
    Filed: October 5, 1990
    Date of Patent: October 27, 1992
    Assignee: Lanxide Technology Company, LP
    Inventor: E. Allen LaRoche, Jr.
  • Patent number: 5154425
    Abstract: The present invention relates to golf clubs and particularly the invention relates to improved golf club heads which utilize composite materials in at least a portion therein. Potentially acceptable composite materials include: metal matrix composite and/or ceramic matrix composite materials. The use of metal matrix or ceramic matrix composite materials in golf club heads result in improved clubs.
    Type: Grant
    Filed: January 13, 1992
    Date of Patent: October 13, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Paul W. Niskanen, Danny R. White, Mark G. Mortensen, Stanislav Antolin
  • Patent number: 5150747
    Abstract: The present invention relates to a novel method for forming metal matrix composite bodies. Particularly, a permeable mass of filler material is formed into a preform. An infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are also in communication with the preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the preform when the preform is placed into the molten matrix metal. A means for maintaining the preform at least partially below the surface of the molten matrix metal can also be utilized.
    Type: Grant
    Filed: March 18, 1991
    Date of Patent: September 29, 1992
    Assignee: Lanxide Technology Company, LP
    Inventor: John T. Burke
  • Patent number: 5149678
    Abstract: The present invention relates to a novel method of manufacturing a composite body, such as a ZrB.sub.2 -ZrC-Zr composite body, by utilizing a post-treatment technique which may improve the oxidation resistance of the composite body. Moreover, the invention relates to novel products made according to the process. The novel process modifies at least a portion of a composite body by exposing said body to a source of second metal.
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: September 22, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, William B. Johnson, Robert A. Rapp
  • Patent number: 5143870
    Abstract: This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 --ZrC--Zr composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: September 1, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Gerhard H. Schiroky, William B. Johnson
  • Patent number: 5141819
    Abstract: A net shaped ceramic-reinforced aluminum matrix composite is formed by forming a permeable mass of ceramic material with a defined surface boundary having a barrier, and contracting a molten aluminum-magnesium alloy with the permeable mass of ceramic material in the presence of a gas comprising from about 10 to 100% nitrogen, by volume, balance nonoxidizing gas, e.g. hydrogen or argon. Under these conditions, the molten alloy spontaneously infiltrates the ceramic mass under normal atmospheric pressures until it reaches the barrier. A solid body of the alloy can be placed adjacent to a permeable bedding of ceramic material having a barrier, and brought to the molten state, preferably to at least about 700.degree. C., in order to form the net shape aluminum matrix composite by infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: August 25, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Terry D. Claar