Patents Assigned to Large Scale Proteomics Corp.
  • Patent number: 6980674
    Abstract: Data acquisition and cataloging are used to classify polypeptides into a reference index or database. The database can be used to identify previously unidentified samples. New polypeptides are characterized and added to the database.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: December 27, 2005
    Assignee: Large Scale Proteomics Corp.
    Inventors: Norman G. Anderson, N. Leigh Anderson
  • Patent number: 6846635
    Abstract: Microarrays are prepared by using a separate fiber for each compound being used in the microarray. The fibers are bundled and sectioned to form a thin microarray that is glued to a backing.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: January 25, 2005
    Assignee: Large Scale Proteomics Corp.
    Inventors: Norman G. Anderson, N. Leigh Anderson, James A. Braatz
  • Patent number: 6761810
    Abstract: An automated assembly for performing first dimension electrophoresis is described herein that includes a supply magazine, an electrophoresis tank and an automated transferring device that robotically transfers biological samples from sample vials retained in the supply magazine, and delivers the biological samples one by one to tube gels supported in a rack within the electrophoresis tank. The transferring device is configured to move in three dimensions with respect to the supply magazine and the rack for flexible sample delivery.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: July 13, 2004
    Assignee: Large Scale Proteomics Corp.
    Inventors: Andrew McGrath, N. Leigh Anderson, Jack Goodman
  • Patent number: 6649419
    Abstract: A method and apparatus for extracting, identifying, and manipulating proteins or peptides from a solution uses paramagnetic beads having a coating with an affinity for the target component. In one embodiment, paramagnetic beads coated with C18 are used to adsorb proteins and peptides. The beads can be used to purify, immobilize and assay antibodies. By cycling the beads, many times greater molar amount of binding partner may be separated from a solution. A magnetic probe is used to capture the beads and transfer the beads to selected processing stages.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: November 18, 2003
    Assignee: Large Scale Proteomics Corp.
    Inventor: N. Leigh Anderson
  • Publication number: 20030032017
    Abstract: Methods are disclosed comprising specific technologies including a system for routinely concentrating proteins from human urine ranging down to approximately 2.5 kDa automated systems for immunosubtraction of major proteins form urine and plasma to reveal minor ones, and systems for routinely fractionating protein mixtures on the basis of native molecular weight, isoelectric point that are applicable to a range of human body fluid proteins, particularly those found in urine.
    Type: Application
    Filed: August 3, 2001
    Publication date: February 13, 2003
    Applicant: Large Scale Proteomics, Corp.
    Inventors: Norman G. Anderson, Madhu Mondal, Rembert Pieper
  • Patent number: 6508986
    Abstract: An alignment plate is provided with a plurality of holes for guiding a pipette tip toward a sample plate of a MALDI mass spectrometer. Each of the holes is provided with a conical upper contour in order to guide the pipette tip toward a specific location on the sample plate. Two companion alignment plates are used in order to overlay two separate arrays of samples on the sample plate. For instance, a first of two alignment plates is formed with a 10×10 array of holes so that a 10×10 array of samples is deposited by the pipette tip onto the sample plate. The second of the two alignment plates is formed with a 9×9 array of holes so that a 9×9 array of samples is deposited on the sample plate at locations offset from the 10×10 array of samples already on the sample plate. The number of samples loaded on the sample plate is large and the space on the sample plate is more fully utilized.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: January 21, 2003
    Assignee: Large Scale Proteomics Corp.
    Inventors: N. Leigh Anderson, John Joseph Lennon, Jack Goodman
  • Patent number: 6485623
    Abstract: A device for forming angled wells in an electrophoresis gel slab includes a device having a plurality of projections oriented at an angle with respect to a longitudinal dimension of the device. A method for forming angled wells in a gel places the device in a gel forming material and allows the material to polymerize to form the electrophoresis gel slab. The device can be removed from the gel slab without distorting or tearing the gel and forming a plurality of substantially uniform sample wells oriented at an angle with respect to the edge of the gel slab. The sample wells are dimensioned to contain a liquid sample for electrophoresis separation. The gel slab can be rotated 90° so that the sample wells are oriented along a vertical edge of the gel slab with the sample wells retaining the liquid sample therein.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: November 26, 2002
    Assignee: Large Scale Proteomics Corp.
    Inventor: N. Leigh Anderson
  • Patent number: 6482303
    Abstract: The present invention provides an integrated, fully automated, high-throughput system for two-dimensional electrophoresis comprised of gel-making machines, gel processing machines, gel compositions and geometries, gel handling systems, sample preparation systems, software and methods. The system is capable of continuous operation at high-throughput to allow construction of large quantitative data sets.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: November 19, 2002
    Assignee: Large Scale Proteomics Corp.
    Inventors: N. Leigh Anderson, Norman G. Anderson, Jack Goodman
  • Publication number: 20020146832
    Abstract: An automated high-throughput system for excising spots or samples from an electrophoresis slab gel includes a computer controlled robotic arm assembly and a sample plate handling assembly for supplying a sample plate to a loading station. The computer is connected to a scanner and imaging device to identify selected sample locations on the slab gel and to direct the robotic arm to the selected locations for excising the gel spots. The cutting assembly includes a removable tray for supporting the slab gel during the cutting process and is coupled to the automated sample plate handling assembly. The sample plate handling assembly delivers a multiwell plate to the cutting assembly for receiving the gel spots. The removable tray cooperates with a scanner for identifying protein spots and includes a positioning device to position the tray in the scanner and the cutting assembly in selected locations to coordinate the scanned image with the cutting process.
    Type: Application
    Filed: May 18, 2001
    Publication date: October 10, 2002
    Applicant: Large Scale Proteomics Corp.
    Inventors: Samuel Michel, Jack Goodman, N. Leigh Anderson
  • Patent number: 6451189
    Abstract: The present invention provides an integrated, fully automated, high-throughput system for two-dimensional electrophoresis comprised of gel-making machines, gel processing machines, gel compositions and geometries, gel handling systems, sample preparation systems, software and methods. The system is capable of continuous operation at high-throughput to allow construction of large quantitative data sets.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: September 17, 2002
    Assignee: Large Scale Proteomics Corp.
    Inventors: N. Leigh Anderson, Norman G. Anderson, Jack Goodman
  • Patent number: 6416644
    Abstract: The present invention provides an integrated, fully automated, high-throughput system for two-dimensional electrophoresis comprised of gel-making machines, gel processing machines, gel compositions and geometries, gel handling systems, sample preparation systems, software and methods. The system is capable of continuous operation at high-throughput to allow construction of large quantitative data sets.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: July 9, 2002
    Assignee: Large Scale Proteomics Corp.
    Inventors: N. Leigh Anderson, Norman G. Anderson, Jack Goodman
  • Patent number: 6404905
    Abstract: A computer-implemented method analyzes a scanned image of a 2-D electrophoresis gel producing spot specific data (SSD). The computer creates an object pattern of a suitably processed scanned image and uses the spot information in the object pattern in order to warp a master pattern into alignment with the object pattern (and hence the scanned image). The object pattern is replaced with the warped master pattern, augmented by addition of well-defined spots in the object image not present in the warped master pattern, and optimized to fit a processed version of the scanned image. This new object model thus contains identifying and relative position information from the master pattern and other spot specific data (SSD) from the old object model. The new object pattern thereby forms a basis upon which to compare the scanned image with other scanned images similarly processed.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 11, 2002
    Assignee: Large Scale Proteomics Corp.
    Inventor: John Taylor, Jr.
  • Patent number: 6398932
    Abstract: The present invention provides an integrated, fully automated, high-throughput system for two-dimensional electrophoresis comprised of gel-making machines, gel processing machines, gel compositions and geometries, gel handling systems, sample preparation systems, software and methods. The system is capable of continuous operation at high-throughput to allow construction of large quantitative data sets.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: June 4, 2002
    Assignee: Large Scale Proteomics Corp.
    Inventors: N. Leigh Anderson, Norman G. Anderson, Jack Goodman
  • Publication number: 20020027078
    Abstract: An apparatus for expressing and unloading an isoelectric focusing gel from an electrophoresis gel tube includes a first support for supporting the gel tube, a plunger rod and a second support for supporting the plunger rod. The first support is mounted on a movable carriage and is moved toward the second support so that the gel tube slides onto the plunger rod to unload the gel from the gel tube. A plurality of gel tubes can be mounted in a rack and the rack coupled to the first support. The first support preferably includes a plurality of openings oriented with the gel tubes for guiding a respective plunger rod through the axial passage of the gel tubes. In preferred embodiments, the second support supporting the plunger rods is substantially stationary while the first support moves toward the second support so that the gel tubes slide onto the plunger rods.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 7, 2002
    Applicant: Large Scale Proteomics Corp.
    Inventors: N. Leigh Anderson, Jack Goodman, L. Eric Wallgren
  • Patent number: 6346421
    Abstract: A method for separating microorganisms, especially infectious agents, from a mixture by two dimensional centrifugation on the basis of sedimentation rate and isopycnic banding density, for sedimenting such microorganisms through zones of immobilized reagents to which they are resistant, for detecting banded particles by light scatter or fluorescence using nucleic acid specific dyes, and for recovering the banded particles in very small volumes for characterization by mass spectrometry of viral protein subunits and intact viral particles, and by fluorescence flow cytometric determination of both nucleic acid mass and the masses of fragments produced by restriction enzymes. The method is based on the discovery that individual microorganisms, such as bacterial and viral species, are each physically relatively homogeneous, and are distinguishable in their biophysical properties from other biological particles, and from non-biological particles found in nature.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: February 12, 2002
    Assignee: Large Scale Proteomics Corp.
    Inventors: Norman G. Anderson, N. Leigh Anderson
  • Publication number: 20020008033
    Abstract: An automated assembly for carrying out a first dimension electrophoresis separation of proteins and other macromolecules includes a supply magazine, an automated transferring device and an electrophoresis tank. The tank includes a rack supporting a plurality of gel tubes and includes a chamber for containing a buffer solution in contact with one end of the gel tubes. The assembly includes a planar cover member overlying the tank. The cover member has a plurality of apertures with a guide surface for guiding the pipette through the chamber to the top end of the gel tubes. The supply magazine includes a carousel for storing sample containers, a bar code reader, a holding device and an arm for transferring the sample container from the carousel to the bar code reader and the holding device. The transferring device includes a robotic assembly that is movable in three dimensions for removing a sample from a sample container and delivering the sample to a selected gel tube in the electrophoresis tank.
    Type: Application
    Filed: March 9, 2001
    Publication date: January 24, 2002
    Applicant: Large Scale Proteomics Corp.
    Inventors: Andrew McGrath, N. Leigh Anderson, Jack Goodman
  • Patent number: 6340570
    Abstract: A method for separating microorganisms, especially infectious agents, from a mixture by two dimensional centrifugation on the basis of sedimentation rate and isopycnic banding density, for sedimenting such microorganisms through zones of immobilized reagents to which they are resistant, for detecting banded particles by light scatter or fluorescence using nucleic acid specific dyes, and for recovering the banded particles in very small volumes for characterization by mass spectrometry of viral protein subunits and intact viral particles, and by fluorescence flow cytometric determination of both nucleic acid mass and the masses of fragments produced by restriction enzymes. The method is based on the discovery that individual microorganisms, such as bacterial and viral species, are each physically relatively homogeneous, and are distinguishable in their biophysical properties from other biological particles, and from non-biological particles found in nature.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: January 22, 2002
    Assignee: Large Scale Proteomics Corp.
    Inventors: Norman G. Anderson, N. Leigh Anderson
  • Publication number: 20010027920
    Abstract: A method and device for transferring an electrophoresis gel from a cassette to a carrier includes a tray having a dimension to receive a cassette and a carrier device. The tray has a bottom wall with a surface with channels or recesses formed by projections to reduce contact of an electrophoresis gel with the bottom wall of the tray. The projections are typically pyramid-shaped members extending to a peak having a small surface area to prevent the electrophoresis gel from adhering to the bottom wall. The bottom wall also includes a recessed area to receive the carrier so that the gel can slide easily from the cassette to open jaws of the carrier. A retaining arm extends from a side wall of the tray to hold the jaws of the carrier in an open position while the gel is being positioned between the clamping surfaces of the jaws.
    Type: Application
    Filed: February 15, 2001
    Publication date: October 11, 2001
    Applicant: Large Scale Proteomics Corp.
    Inventors: N. Leigh Anderson, Jack Goodman, Andrew McGrath
  • Patent number: 6254834
    Abstract: A method for separating microorganisms, especially infectious agents, from a mixture by two dimensional centrifugation on the basis of sedimentation rate and isopycnic banding density, for sedimenting such microorganisms through zones of immobilized reagents to which they are resistant, for detecting banded particles by light scatter or fluorescence using nucleic acid specific dyes, and for recovering the banded particles in very small volumes for characterization by mass spectrometry of viral protein subunits and intact viral particles, and by fluorescence flow cytometric determination of both nucleic acid mass and the masses of fragments produced by restriction enzymes. The method is based on the discovery that individual microorganisms, such as bacterial and viral species, are each physically relatively homogeneous, and are distinguishable in their biophysical properties from other biological particles, and from non-biological particles found in nature.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: July 3, 2001
    Assignee: Large Scale Proteomics Corp.
    Inventors: Norman G. Anderson, N. Leigh Anderson