Patents Assigned to Laser Technology, Inc.
  • Patent number: 6621609
    Abstract: A laser beam display includes at least a first and second plurality of laser beam sources, each of which may preferably be an array of semiconductor lasers, providing a plurality of laser beams in an optical path so as to reflect off of reflective facets of a movable reflector and illuminate a display screen. In a color display, each column of the laser array corresponds to a separate primary color. The separate rows of each array correspond to independently activated but simultaneously driven scan lines to be illuminated by the laser beam scanning apparatus. The plural laser beam arrays subdivide the width of the screen into smaller scan segments to increase the scanning angle or increase the horizontal scanning speed of the apparatus. Tilted facets illuminate different vertical sections of the screen with the laser beams as the reflector rotates. A scan format employing simultaneously illuminated diagonal scan tiles provides optimal use of the plural laser beam arrays.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: September 16, 2003
    Assignee: Advanced Laser Technologies, Inc.
    Inventor: Donald C. Conemac
  • Patent number: 6528758
    Abstract: An apparatus for forming transitioned edges in patterns formed by a scanning laser in a dyed textile material is disclosed. The transition rate between the untreated material and the treated material is controlled by passing a scanning laser beam through a mask prior to the laser beam reaching a focal point. An apertured mask can be employed to control the transition rate, wherein the location of the aperture relative to the focal point of the laser beam and configuration of the aperture periphery are manipulated to effect the transition rate.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: March 4, 2003
    Assignee: Icon Laser Technologies, Inc.
    Inventor: Wayne K. Shaffer
  • Patent number: 6525785
    Abstract: The present invention proposes a transmission-type liquid crystal projection display, which comprises an incident light source, a light-separating means, three transmission-type liquid crystal display, an L-shaped dichroic polarizing prism set, an optical path adjusting means, and a projection lens. The light source provides a single polarized light. The light-separating means separates the polarized light into three colored lights of the three primary wavelengths. The three liquid crystal displays respective correspond to the three colored lights. The optical path adjusting means is used to let the three colored lights travel through the corresponding three liquid crystal displays and then be incident on the L-shaped dichroic polarizing prism set so that the three colored lights can be synthesized into a single output light beam. The projection lens projects the output light beam onto a screen. The present invention has the effects of high efficiency, low cost, and simplified fabrication process.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: February 25, 2003
    Assignee: K Laser Technology, Inc.
    Inventor: Shin-Gwo Shiue
  • Patent number: 6445444
    Abstract: A highly precise range measurement instrument is made possible through the use of a novel and efficient precision timing circuit which makes use of the instruments internal central processing unit crystal oscillator. A multi-point calibration function includes the determination of a “zero” value and a “cal” value through the addition of a known calibrated pulse width thereby providing the origin and scale for determining distance with the constant linear discharge of capacitor.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: September 3, 2002
    Assignee: Laser Technology, Inc.
    Inventor: Jeremy G. Dunne
  • Patent number: 6402323
    Abstract: The present invention proposes a reflective type liquid crystal projection system, which comprises an incident light source providing an S-polarization light beam or a P-polarization light beam as the incident light beam. A polarization of color-splitting device having a first polarization of color splitter and a second polarization of color splitter is used to split the incident light beam of three primary colors into two sets of light beams, which respectively penetrate through or are reflected. The two sets of light beams split by the first polarization of color splitter are reflected by two reflective mirrors, traverse two polarizing plates arranged between the reflective mirrors and the second polarization of color splitter, and are then incident on the second polarization of color splitter. At least a retarder is arranged between the reflective mirrors and the polarization of color-splitting device.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: June 11, 2002
    Assignee: K Laser Technology, Inc.
    Inventors: Shin Gwo Shiue, I-Pen Chien, Mang Ou-Yang, Chun-Lung Lai, Hsin-Chu Liu
  • Publication number: 20020049450
    Abstract: The invention consists of methods for treating the clear, intact crystalline lens of the eye with high energy light such as lasers, for the purpose of correcting presbyopia, other refractive errors, and the prevention of cataracts. The aim is to change the mass, shape, and/or flexure of the crystalline lens in order to maintain or reestablish the focus of all light onto the macular area.
    Type: Application
    Filed: June 29, 2001
    Publication date: April 25, 2002
    Applicant: Second Sight Laser Technologies, Inc.
    Inventor: Raymond I. Myers
  • Patent number: 6377186
    Abstract: A sensor for determining the position of a movable object along a selected axis. The system includes a target positioned at a location aligned with the selected axis. An optical energy emitter is mounted on the movable object and has a beam dispersion greater than two degrees directed at the target. An optical energy receiver is mounted on the movable object and aligned to receive optical energy reflected by the target. The optical energy detector generates a receive signal indicating reception of the optical energy. A time of flight circuit coupled to the emitter and receiver generates a flight time signal indicating the elapsed time from emission of the optical energy to reception of reflected optical energy. A control circuit monitors the flight time signal and outputs a position signal indicating position of the movable object with respect to the target.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: April 23, 2002
    Assignee: Laser Technology, Inc.
    Inventors: Jeremy G. Dunne, Patrick J. Delohery
  • Patent number: 6339468
    Abstract: Disclosed is an optical sensor used for remote laser level monitoring in liquid storage vessels. The sensor is mounted directly to a standard tank nipple, located on top of the vessel, by a threaded connecting means and is linked to a laser measurement device via fiber optic cabling. The level in the vessel is measured as a function of the time required for a laser signal to be transmitted from the sensor, reflected off the liquid surface and returned to the receiver lens located in the sensor.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: January 15, 2002
    Assignee: Laser Technology, Inc.
    Inventors: Bruce Clifford, John Harrison
  • Patent number: 6282803
    Abstract: A self calibrating zero compensation circuit for a fluxgate compass comprising a toroidal core; a drive winding coupled to said core, and at least one and preferably two secondary sensing windings coupled to said core comprises a continuously operating demodulator coupled to the sensing windings and an intermittently operated drive signal fed to the drive winding. A microprocessor is coupled to the demodulator output through an analog to digital converter. The microprocessor provides alternatingly to the drive winding a drive signal for a first period of time and prevents transmission of the drive signal for a second, preferably equal period of time. During the second period of time, the sensing windings and the demodulator provide an output signal to said microprocessor representing the zero signal reference. The demodulator output during the first period of time represents the magnetic field signal from the compass.
    Type: Grant
    Filed: April 24, 1998
    Date of Patent: September 4, 2001
    Assignee: Laser Technology, Inc.
    Inventor: Jeremy G. Dunne
  • Patent number: 6282442
    Abstract: A disposable hand piece providing irrigation and aspiration capability to a surgical field can adaptably hold within itself endoscopes of different manufacturers. Running through the hand piece is a bore; attached at the distal end of the hand piece is a reusable sheath. The tubular shaft of an endoscope is inserted into the bore of the hand piece and the reusable sheath. A first collet at the proximal side of the hand piece securely holds the endoscope by adjusting to the outer diameter of the tubular shaft of the endoscope. A second collet at the distal side of the hand piece holds the reusable sheath in a selected linear extension. The collets, however, permit the tubular shaft and the reusable sheath to be rotated in place and thus adjust the view of the surgical field. An annular space is maintained between the tubular shaft and the reusable sheath so as to provide a channel for irrigation and aspiration. Further aspiration capability is provided by a separate suction device.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: August 28, 2001
    Assignee: Surgical Laser Technologies, Inc.
    Inventors: Mark A. DeStefano, Stewart I. Jaffe
  • Patent number: 6226126
    Abstract: A laser beam mixer combines two or more input laser beams in a coaxial manner to provide an output beam. At least one of the input beams is altered in cross-sectional profile, for example, to an annular cross-sectional shape. Another input beam is placed within the altered beam by a beam combining element having a transmissive portion and a reflective portion to respectively reflect and transmit the two input beams. The beams are combined with minimal beam losses and without diverging a beam profile.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: May 1, 2001
    Assignee: Advanced Laser Technologies, Inc.
    Inventor: Donald C. Conemac
  • Patent number: 6226077
    Abstract: A highly precise range measurement instrument is made possible through the use of a novel and efficient precision timing circuit which makes use of the instrument's internal central processing unit crystal oscillator. A multi-point calibration function includes the determination of a “zero” value and a “cal” value through the addition of a known calibrated pulse width thereby providing the origin and scale for determining distance with the constant linear discharge of capacitor.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: May 1, 2001
    Assignee: Laser Technology, Inc.
    Inventor: Jeremy G. Dunne
  • Patent number: 6212480
    Abstract: An apparatus and method for measuring coefficients of retroreflectance of retroreflective surfaces such as road signs involves use of a modified light based range finder. The apparatus includes a power attenuation factor data base which relates pulse width of received pulses to power attenuation of the transmitted pulses. The range finder calculates target range based on time of flight of light pulses. The apparatus automatically calculates the absolute coefficient of retroreflectance for an unknown reflective surface being measured by comparison of the measurement to a reading with the same instrument of a known reflectance standard.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: April 3, 2001
    Assignee: Laser Technology, Inc.
    Inventor: Jeremy G. Dunne
  • Patent number: 6175440
    Abstract: A laser beam display includes at least a first and second plurality of laser beam sources, each of which may preferably be an array of semiconductor lasers, providing a plurality of laser beams in an optical path so as to reflect off of reflective facets of a movable reflector and illuminate a display screen. In a color display, each column of the laser array corresponds to a separate primary color. The separate rows of each array correspond to independently activated but simultaneously driven scan lines to be illuminated by the laser beam scanning apparatus. The plural laser beam arrays subdivide the width of the screen into smaller scan segments to increase the scanning angle or increase the horizontal scanning speed of the apparatus. Tilted facets illuminate different vertical sections of the screen with the laser beams as the reflector rotates. A scan format employing simultaneously illuminated diagonal scan tiles provides optimal use of the plural laser beam arrays.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: January 16, 2001
    Assignee: Advanced Laser Technologies, Inc.
    Inventor: Donald C. Conemac
  • Patent number: 6144308
    Abstract: A tilt compensation method, circuit and apparatus utilizes a two axis tilt sensor or two single axis tilt sensors for alerting, a user and/or compensating a surveying instrument for off vertical alignment above a reference point when the instrument support is free to move about the reference point, e.g., when mounted on a monopod support. The sensor comprises a cell having a central electrode and four peripheral electrodes spaced 90 degrees apart around the central electrode. Fluid in the cell chamber changes the conductance of the electrodes with reference to the central electrode. The cell is mounted to the support or to the instrument itself. A microprocessor preferably provides a square wave drive signal selectively to alternate pairs of the opposing electrodes through tristate buffers while at the same time the microprocessor provides a channel select signal to the gate of the tristate buffers to float the idle electrodes.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: November 7, 2000
    Assignee: Laser Technology, Inc.
    Inventor: Jeremy G. Dunne
  • Patent number: 6134050
    Abstract: A laser beam mixer combines two or more input laser beams in a coaxial manner to provide an output beam. At least one of the input beams is altered in cross-sectional profile, for example, to an annular cross-sectional shape. Another input beam is placed within the altered beam by a beam combining element having a transmissive portion and a reflective portion to respectively reflect and transmit the two input beams. The beams are combined with minimal beam losses and without diverging a beam profile.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: October 17, 2000
    Assignee: Advanced Laser Technologies, Inc.
    Inventor: Donald C. Conemac
  • Patent number: 6101208
    Abstract: A transverse pumping system for a laser rod uses orthogonally arranged banks of laser diodes which create overlapping patterns of illumination inside the rod.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: August 8, 2000
    Assignee: Diode Pumped Laser Technologies, Inc.
    Inventor: M. Cem Gokay
  • Patent number: 6073352
    Abstract: A laser rangefinder bow sight adapted for use preferably with a conventional multi-pin bow sight having a frame and a plurality of sighting pins adjustably positioned on said frame. The laser rangefinder has a housing removably fastened to the bow sight frame. The housing supports a laser transmit section, a laser receive section, a precision timing section and a central processing unit (CPU) for measuring distance to a target coupled to an LCD display. The CPU also provides outputs to a plurality of range window indicator lights which are preferably LEDs. The indicator lights may be externally mounted to the bow sight pins or mounted within the rangefinder housing. In the latter case, a plurality of optical fibers are connected to the distance window lights in the housing. Each of the sighting pins is optically coupled to a separate one of the plurality of distance window lights via one of the optical fibers.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: June 13, 2000
    Assignee: Laser Technology, Inc.
    Inventors: Blair J. Zykan, Jeremy G. Dunne
  • Patent number: 6064330
    Abstract: An apparatus and method for accurately determining a target distance in adverse weather conditions utilizing both LASER and RADAR is disclosed. The radar signals are used to determine an approximate range which is then used as a gating window for the determination of which laser reflection is from the actual target as opposed to a reflection from the atmospheric interference. The method basically comprises the steps of initiating a radar pulse in the direction of a target and receiving a reflection, transmitting a laser signal and receiving a plurality of reflections, determining an approximate range based on the radar signals, and using this approximate range to ascertain which of the laser reflections is from the target. This determination is preferably made by generating a gating signal and gate width from the radar signals and passing the set of laser range signals through the gate to eliminate the false signals and select the signal that survives the gate as the accurate target range.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: May 16, 2000
    Assignee: Laser Technology, Inc.
    Inventors: Scott Elliott, Eric A. Miller, Jeremy G. Dunne
  • Patent number: 6057910
    Abstract: A highly precise range measurement instrument is made possible through the use of a novel and efficient precision timing circuit which makes use of the instrument's internal central processing unit crystal oscillator. A multi-point calibration function includes the determination of a "zero" value and a "cal" value through the addition of a known calibrated pulse width thereby providing the origin and scale for determining distance with the constant linear discharge of capacitor.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: May 2, 2000
    Assignee: Laser Technology, Inc.
    Inventor: Jeremy G. Dunne