Patents Assigned to LaXense, Inc.
-
Publication number: 20180314128Abstract: An optical waveguide modulator device includes two optical waveguides forming a Mach-Zehnder interferometer structure and two co-planar waveguide (CPW) traveling-wave electrodes (TWEs). Each optical waveguide includes a plurality of segmented phase tuning sections (phasers). The segmented phasers are folded multiple times and the segments are perpendicular to the TWE electrodes. The phase of the optical signal passing through the optical waveguide is electrically tunable by electrical signals applied to the optical modulator device through the two CPW TWE electrodes. The lengths of the connecting sections between adjacent phaser segments are design such that the wave fronts of microwave and optical wave can be matched after each phaser segment. The CPW TWE electrodes are connected by a plurality of capacitive loading phaser segments, which can effectively reduce the characteristic impedance of the TWE electrodes.Type: ApplicationFiled: October 18, 2017Publication date: November 1, 2018Applicant: LaXense Inc.Inventors: Xiaochen Sun, Ningning Feng
-
Publication number: 20170205580Abstract: An optical waveguide mode transformer device includes a first optical waveguide bend structure and a second optical waveguide bend structure formed by vertically stacked multiple layers of light transparent media. One of the core layers of the optical waveguide bends has a higher refractive index and the other has a lower refractive index. The waveguide centers of the two optical bend structures are de-centered. The bend structure having higher refractive index core layer terminates at a location of the mode transformer device between its two ends. With proper bend structure design, the optical power can be completely transferred from the high index waveguide to the low index waveguide with the help of such vertical stacked de-centered bend structure.Type: ApplicationFiled: January 17, 2016Publication date: July 20, 2017Applicant: LaXense Inc.Inventors: Ningning Feng, Xiaochen Sun
-
Publication number: 20170184883Abstract: An optical device includes a substrate and an optical rib waveguide structure formed of a slab and a rib. A vertically-oriented P-N-P or N-P-N dual-junction diode is formed inside the rib waveguide, including a first doped region, a second doped region and a third doped region electrically connected to the first doped region, where two P-N junctions are formed at the boundaries of the first and the second doped regions, and the second and the third doped regions, respectively. The depletion regions of the two junctions are substantially in the center of a guided optical mode propagating at the core region through the rib waveguide. The optical device further includes a first metal contact and a second metal contact in electrical contact with the first doped region and the second doped region, respectively.Type: ApplicationFiled: March 16, 2017Publication date: June 29, 2017Applicant: LaXense Inc.Inventors: Xiaochen Sun, Ningning Feng
-
Publication number: 20160313577Abstract: An optical device includes a substrate and an optical rib waveguide structure formed of a slab and a rib. A vertically-oriented P-N-P or N-P-N dual-junction diode is formed inside the rib waveguide, including a first doped region, a second doped region and a third doped region electrically connected to the first doped region, where two P-N junctions are formed at the boundaries of the first and the second doped regions, and the second and the third doped regions, respectively. The depletion regions of the two junctions are substantially in the center of a guided optical mode propagating at the core region through the rib waveguide. The optical device further includes a first metal contact and a second metal contact in electrical contact with the first doped region and the second doped region, respectively.Type: ApplicationFiled: April 23, 2015Publication date: October 27, 2016Applicant: LaXense Inc.Inventors: Xiaochen Sun, Ningning Feng
-
Patent number: 8831049Abstract: A tunable optical system with hybrid integrated semiconductor laser is provided. The optical system includes a silicon-on-insulator (SOI) substrate; a first optical waveguide tunable comb filter formed at the first side of the SOI substrate; a second optical waveguide tunable comb filter with detuned filter response formed at the first side of the SOI substrate; an etched laser pit at the first side of the SOI substrate; a plurality of spacers formed on the bottom surface of the laser pit near the plane of the first side of the SOI substrate; a plurality of bumping pads formed on the bottom surface of the laser pit near the plane of the first side of the SOI substrate; and a laser chip flip-chip bonded at the first side of the SOI substrate supported by the spacers. Heating sections may be provided on the filters to tune the filters.Type: GrantFiled: September 14, 2012Date of Patent: September 9, 2014Assignee: Laxense Inc.Inventors: Ningning Feng, Xiaochen Sun, Dawei Zheng
-
Patent number: 8798410Abstract: An optical system includes a silicon substrate, a 45-degree or 54.7-degree reflector formed in the silicon substrate, deeply etched double U-shape trenches formed in the silicon substrate, a thin film disposed on the reflector surface with total or partial optical refection, a top and bottom surface contacted p-i-n structure formed in the silicon substrate for optical power monitoring, a plurality of rectangular or wedge shaped spacers formed on top surface of the silicon substrate, and a surface emitting light source flip-chip bonded on the silicon substrate via the spacers.Type: GrantFiled: June 12, 2012Date of Patent: August 5, 2014Assignee: Laxense Inc.Inventors: Ningning Feng, Xiaochen Sun, Dawei Zheng
-
Patent number: 8723125Abstract: A Ge waveguide photo-detector fabricated on a silicon-on-insulator substrate is provided. It comprises a Ge waveguide detector end-coupled to a light-signal-carrying silicon waveguide, both disposed on a silicon-on-insulator (SOI) substrate. An electrical field is established along the direction of light propagation inside the Ge waveguide detector by doping the two opposite ends of the Ge detector with P or N type dopants. In result the height and width of the Si waveguide is decoupled from the speed of the Ge detector.Type: GrantFiled: November 6, 2012Date of Patent: May 13, 2014Assignee: Laxense Inc.Inventors: Dawei Zheng, Ningning Feng, Xiaochen Sun
-
Publication number: 20140079082Abstract: A tunable optical system with hybrid integrated semiconductor laser is provided. The optical system includes a silicon-on-insulator (SOI) substrate; a first optical waveguide tunable comb filter formed at the first side of the SOI substrate; a second optical waveguide tunable comb filter with detuned filter response formed at the first side of the SOI substrate; an etched laser pit at the first side of the SOI substrate; a plurality of spacers formed on the bottom surface of the laser pit near the plane of the first side of the SOI substrate; a plurality of bumping pads formed on the bottom surface of the laser pit near the plane of the first side of the SOI substrate; and a laser chip flip-chip bonded at the first side of the SOI substrate supported by the spacers. Heating sections may be provided on the filters to tune the filters.Type: ApplicationFiled: September 14, 2012Publication date: March 20, 2014Applicant: LaXense Inc.Inventors: Ningning Feng, Xiaochen Sun, Dawei Zheng
-
Publication number: 20140029890Abstract: An optical system and a method of fabrication are provided. The optical system includes a substrate and at least one hole extending from a second side of the substrate towards a first side of the substrate and configured to receive at least one optical fiber. The substrate includes at least one photodetector at the first side or between the at least one hole and the first side and configured to be in an optical path of an optical signal emitted from the at least one optical fiber or transmitted through the first side to the at least one optical fiber.Type: ApplicationFiled: July 25, 2012Publication date: January 30, 2014Applicant: LaXense, Inc.Inventors: Xiaochen Sun, Dawei Zheng, Ningning Feng
-
Publication number: 20130308906Abstract: An optical system and method for coupling optical devices and an optical fiber array are provided. The optical system includes a substrate comprising a first side and a second side facing generally opposite to the first side. The optical system further includes at least one optical waveguide extending along at least a portion of the first side, at least one hole extending from the second side towards the first side, and at least one reflective element at the first side. The at least one reflective element is in optical communication with the at least one optical waveguide and with the at least one hole. The at least one reflective element is configured to deflect light between the at least one optical waveguide and the at least one hole.Type: ApplicationFiled: May 21, 2012Publication date: November 21, 2013Applicant: LaXense, Inc.Inventors: Dawei Zheng, Ningning Feng, Xiaochen Sun