Abstract: A system (100) comprising one or more processors (110) and one or more storage devices (120) is configured to obtain biology-related image-based input data (107) and generate a high-dimensional representation of the biology-related image-based input data (107) by a trained visual recognition machine-learning algorithm executed by the one or more processors (110). The high-dimensional representation comprises at least 3 entries each having a different value. Further, the system is configured to at least one of store the high-dimensional representation of the biology-related image-based input data (107) together with the biology-related image-based input data (107) by the one or more storage devices (120) or output biology-related language-based output data (109) corresponding to the high-dimensional representation.
Abstract: A system (100) for processing biology-related data comprises one or more processors (110) coupled to one or more storage devices (120). The system (100) is configured to receive biology-related image-based search data (103) and configured to generate a first high-dimensional representation of the biology-related image-based search data (103) by a trained visual recognition machine-learning algorithm executed by the one or more processors (110). The first high-dimensional representation comprises at least 3 entries each having a different value. Further, the system (100) is configured to obtain a plurality of second high-dimensional representations (105) of a plurality of biology-related image-based input data sets or of a plurality of biology-related language-based input data sets.
Abstract: Embodiments relate to a system (100) comprising one or more processors (110) and one or more storage devices (120). The system (100) is configured to receive biology-related language-based search data (101) and generate a first high-dimensional representation of the biology-related language-based search data (101) by a trained language recognition ma-chine-learning algorithm executed by the one or more processors (110). The first high-dimensional representation comprises at least 3 entries each having a different value. Further, the system is configured to obtain a plurality of second high-dimensional representations (105) of a plurality of biology-related image-based input data sets or of a plurality of biology-related language-based input data sets and compare the first high-dimensional representation with each second high-dimensional representation of the plurality of second high-dimensional representations (105).
Abstract: An optical imaging device for a microscope comprises a first optical system configured to form a first optical image corresponding to a first region of a sample in accordance with a first imaging mode, a second optical system configured to form a second optical image corresponding to a second region of said sample, wherein said first and second regions spatially coincide in a target region of said sample and said first and second imaging modes are different from each other, a memory storing first distortion correction data suitable for correcting a first optical distortion caused by said first optical system in said first optical image, second distortion correction data suitable for correcting a second optical distortion caused by said second optical system in said second optical image, and transformation data suitable for correcting positional misalignment between said first and second optical images, and a processor which is configured to process first image data representing said first optical image based
Type:
Grant
Filed:
October 28, 2020
Date of Patent:
December 12, 2023
Assignee:
Leica Microsystems CMS GmbH
Inventors:
Kai Ritschel, Marco Bingel, Patric Pelzer
Abstract: A rotating direction change device for a microtome includes: a first shaft arranged in a first fixed position; a first gear wheel non-rotatably mounted to the first shaft; a second shaft movable in a first direction; a second gear wheel non-rotatably mounted to the second shaft; a third shaft movable in a second direction; a third gear wheel non-rotatably mounted to the third shaft; and a first connection part connecting the second shaft and the third shaft such that the second gear wheel is constantly meshed with the third gear wheel, in which the second gear wheel can be driven by the first gear wheel directly or indirectly. Hence, the rotating direction change device has advantages of simple structure and low friction.
Abstract: A computerized efficient data processing management method for imaging applications first performs a data flow graph generation by computing means using at least one image data and at least one requested task to generate a data flow graph. The method then applies a task execution scheduling using the data flow graph generated, a caching system configuration, the at least one image data and at least one requested task to schedule execution of the at least one requested task to generate task execution output. In addition, an adaptive data processing method performs caching system update and an optimal data processing method further performs data flow graph update.
Type:
Grant
Filed:
August 21, 2020
Date of Patent:
October 24, 2023
Assignee:
Leica Microsystems CMS GmbH
Inventors:
Christopher Birnbaum, Shih-Jong James Lee, Tuan Phan
Abstract: Provided are an imaging unit 104 that uses a light emitted from a second beam splitter 202 of a microscope 2 that can use an exciting light and an observation light, which is a light including a wavelength other than that of the exciting light, as a light source by switching there between and is provided with the second beam splitter 202 to image images of the same observation region of the microscope 2 in situations where the exciting light and the observation light are used as the light source and an output unit 106 that overlaps, synthesizes, and outputs the images imaged by the imaging unit 104 respectively using the exciting light and the observation light as the light source.
Abstract: A retraction device includes a spindle movable along the axis thereof and an operating unit including a pull rod and a movable member. The movable member defines a step-shaped groove, the pull rod has a first end connected to the spindle, and a second end received in the groove; the groove includes a first step and a second step and an inclined face connecting the first step and the second step arranged along a first direction, and a height of the second step is greater than that of the first step along the axis direction of the spindle; the movable member is slidable along the first direction relative to the pull rod, to allow the spindle to switch between a retraction position in which the pull rod is received in the second step, and a release position in which the pull rod is received in the first step.
Abstract: A SPIM-microscope (Selective Plane Imaging Microscopy) and a method of operating the same having a y-direction illumination light source and a z-direction detection light camera. An x-scanner generates a sequential light sheet by scanning the illumination light beam in the x-direction. An electronic zoom is provided that is adapted to change the scanning length in the x-direction independently of a focal length of the illumination light beam and a size of the light sheet in the y-direction and in the z-direction, wherein the number of image pixels in x-direction is maintained unchanged by the electronic zoom independently of the scanning length in x-direction that has been selected.