Abstract: A method that includes illuminating an eye with light at a first time and a second time and generating a first image of the eye based on the light that illuminates the eye at the first time. The method includes generating a second image of the eye based on the light that illuminates the eye at the second time. The method further includes positioning a laser source relative to the eye, wherein the laser source generates a therapeutic laser beam to be directed to the eye, wherein the first time is just prior to the therapeutic laser beam being directed to the eye and the second time is prior to the first time. The method further includes correcting orientation of the laser source relative to the eye based on a correlation function that is defined for the first and second images of the eye.
Abstract: Cataract surgery is in recent years more and more augmented and supported by the application of laser cuts in the eye tissue. Such laser systems are separate units from the phacoemulsification system units that are usually used for cataract extraction. The laser systems require the patient to be positioned under the laser unit and then being moved under the surgical microscope next to the phacoemulsification unit. The here described invention relates to systems combining several aspects of the laser system and the phacoemulsification system. In particular, this invention relates to combining at least some parts of the control system and the housing for both systems and thereby minimizing and optimizing setup time, operating room footprint, patient flow and cost. Furthermore the here disclosed invention relates to integrating the laser system under the surgical microscope and thereby significantly reducing the surgery setup and complexity.
Abstract: Methods and system for improved laser eye surgery using photodisruptive laser pulses. A system for moving a femtosecond laser delivery head in a horizontal direction from a retracted position to an extended position over a patient.
Type:
Grant
Filed:
September 28, 2017
Date of Patent:
July 8, 2025
Assignee:
Lensar, Inc.
Inventors:
Christopher Horvath, Vanessa Isabella Vera
Abstract: Cataract surgery is in recent years more and more augmented and supported by the application of laser cuts in the eye tissue. Such laser systems are separate units from the phacoemulsification system units that are usually used for cataract extraction. The laser systems require the patient to be positioned under the laser unit and then being moved under the surgical microscope next to the phacoemulsification unit. The here described invention relates to systems combining several aspects of the laser system and the phacoemulsification system. In particular, this invention relates to combining at least some parts of the control system and the housing for both systems and thereby minimizing and optimizing setup time, operating room footprint, patient flow and cost. Furthermore the here disclosed invention relates to integrating the laser system under the surgical microscope and thereby significantly reducing the surgery setup and complexity.
Abstract: There is provided a system, apparatus and methods for enhancing the illumination of structures of the eye using predetermined scan patterns of an illuminating light beam. The systems, apparatus and methods further provide for obtaining enhanced single images of multiple structures of the eye.
Type:
Application
Filed:
June 10, 2024
Publication date:
May 8, 2025
Applicant:
Lensar, Inc.
Inventors:
Gary P. Gray, Rudolph W. Frey, Richard TY Olmstead, Steven E. Bott, James Strobel
Abstract: Systems and methods for performing laser cataract surgery, for using a biometric system to determine a material property of a structure of the eye, laser pulses in a laser shot pattern having different powers. A therapeutic laser, and laser delivery system having the capability to vary the power of the laser beam.
Type:
Grant
Filed:
July 13, 2020
Date of Patent:
March 18, 2025
Assignee:
Lensar, Inc.
Inventors:
Dustin Morley, Gary P. Gray, Richard Ty Olmstead
Abstract: A method for forming an incision in an eye, the method including performing a first pass of a first laser beam along a path within an eye, wherein after completion of the first pass there exists a residual uncut layer at an anterior surface of a cornea of the eye. The method further including performing a second pass of a second laser beam only along a portion of the path that contains the residual uncut layer, wherein after completion of the second pass, the residual uncut layer is transformed into a full complete through surface incision.
Abstract: Systems and methods are described for a combined Femto and Phaco surgical system built into a single housing. The system advantageously permits each of the Femto device and Phaco surgical tray to be rotated out of the way or into the position without requiring movement of a patient. Thus, a user can switch between Femto and Phaco surgical procedures without movement of the patient.
Abstract: A method of generating three dimensional shapes for a cornea and lens of an eye, the method including illuminating an eye with multiple sections of light and obtaining multiple sectional images of said eye based on said multiple sections of light. For each one of the obtained multiple sectional images, the following processes are performed: a) automatically identifying arcs, in two-dimensional space, corresponding to anterior and posterior corneal and lens surfaces of the eye by image analysis and curve fitting of the one of the obtained multiple sectional images; and ) determining an intersection of lines ray traced back from the identified arcs in two-dimensional space with a known position of a section of space containing the section of light that generated the one of the obtained multiple sectional images, wherein the determined intersection defines a three-dimensional arc curve.
Type:
Application
Filed:
May 28, 2024
Publication date:
December 26, 2024
Applicant:
Lensar, Inc.
Inventors:
Gary P. Gray, Rudolph W. Frey, Steven E. Bott
Abstract: Systems and methods for increasing the amplitude of accommodation of an eye, changing the refractive power of lens material of a natural crystalline lens of the eye, and addressing presbyopia are is provided. Generally, there are provided methods and systems for delivering a laser beam to a lens of an eye in a plurality of laser shots, which are in precise and predetermined patterns results in the weakening of the lens material.
Abstract: A method that includes illuminating an eye with light at a first time and a second time and generating a first image of the eye based on the light that illuminates the eye at the first time. The method includes generating a second image of the eye based on the light that illuminates the eye at the second time. The method further includes positioning a laser source relative to the eye, wherein the laser source generates a therapeutic laser beam to be directed to the eye, wherein the first time is just prior to the therapeutic laser beam being directed to the eye and the second time is prior to the first time. The method further includes correcting orientation of the laser source relative to the eye based on a correlation function that is defined for the first and second images of the eye.
Abstract: A method for forming an incision in an eye, the method including performing a first pass of a first laser beam along a path within an eye, wherein after completion of the first pass there exists a residual uncut layer at an anterior surface of a cornea of the eye. The method further including performing a second pass of a second laser beam only along a portion of the path that contains the residual uncut layer, wherein after completion of the second pass, the residual uncut layer is transformed into a full complete through surface incision.
Abstract: There is provided a system, apparatus and methods for developing laser systems that can create precise predetermined clear corneal incisions that are capable of reducing induced astigmatism. The systems, apparatus and methods further provide laser systems that can provide these incisions at or below Bowman's membrane.
Type:
Application
Filed:
August 7, 2023
Publication date:
June 27, 2024
Applicant:
Lensar, Inc.
Inventors:
Ramon Naranjo-Tackman, Jorge Octavio Villar Kuri, Rudolph W. Frey
Abstract: There is provided a system, apparatus and methods for enhancing the illumination of structures of the eye using predetermined scan patterns of an illuminating light beam. The systems, apparatus and methods further provide for obtaining enhanced single images of multiple structures of the eye.
Type:
Grant
Filed:
May 31, 2021
Date of Patent:
June 11, 2024
Assignee:
Lensar, Inc.
Inventors:
Gary P. Gray, Rudolph W. Frey, Richard Ty Olmstead, Steven E. Bott, James Strobel
Abstract: A method of generating three dimensional shapes for a cornea and lens of an eye, the method including illuminating an eye with multiple sections of light and obtaining multiple sectional images of said eye based on said multiple sections of light. For each one of the obtained multiple sectional images, the following processes are performed: a) automatically identifying arcs, in two-dimensional space, corresponding to anterior and posterior corneal and lens surfaces of the eye by image analysis and curve fitting of the one of the obtained multiple sectional images; and b) determining an intersection of lines ray traced back from the identified arcs in two-dimensional space with a known position of a section of space containing the section of light that generated the one of the obtained multiple sectional images, wherein the determined intersection defines a three-dimensional arc curve.
Type:
Grant
Filed:
November 29, 2021
Date of Patent:
May 28, 2024
Assignee:
Lensar, Inc.
Inventors:
Gary P. Gray, Rudolph W. Frey, Steven E. Bott
Abstract: Systems and methods are described for a combined Femto and Phaco surgical system built into a single housing. The system advantageously permits each of the Femto device and Phaco surgical tray to be rotated out of the way or into the position without requiring movement of a patient. Thus, a user can switch between Femto and Phaco surgical procedures without movement of the patient.
Abstract: Systems and methods for performing laser operations to improve the accommodative amplitude of an eye. Systems methods and laser delivery patterns and operation for structural pillars in the lens of the eye to permit deformation of laser effected areas of the lens that are adjacent to the pillars.
Abstract: The here described invention generally relates to systems for laser eye surgery. It certain embodiments it discloses systems to perform femtosecond eye surgery without docking between the laser delivery system and the patient's eye as well as certain laser delivery system configurations that allow integration of laser delivery systems into a surgical microscope in specific ways, as well as integration into a slit lamp system.