Patents Assigned to LensVector
  • Patent number: 11768419
    Abstract: A beam steering system may include a dynamically controllable liquid crystal (LC) beam steering device including an array of multiple LC beam steering segments, an upstream lens array arranged upstream of the beam steering device, and control electronics configured to control the beam steering device to output a directionally steered light. The upstream lens array includes multiple upstream lens elements, each configured to reduce a beam width of a respective light beam to provide a reduced-diameter light beam to a corresponding LC beam steering segment in the multi-segment LC beam steering device. Providing reduced-diameter light beams to the beam steering device may reduce unwanted beam steering effects and provide an improved beam steering efficiency of the beam steering system.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: September 26, 2023
    Assignees: VOLKSWAGEN AKTIENGESELLSCHAFT, LENSVECTOR
    Inventors: Heiko Schröder, Tigran Galstian, Armen Zohrabyan
  • Patent number: 11097651
    Abstract: For vehicles having left and right headlights, a steering direction signal input indicative of a left or right steering direction is used to modulate a control signal of a liquid crystal beam broadening device to broaden horizontally the vehicle headlight beam when the steering direction signal input is indicative of a selected one of a left or a right steering direction and to maintain or reduce a horizontal spread of the vehicle headlight beam when said steering direction signal input is indicative of one of a left or a right steering direction opposite to the selected steering direction.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 24, 2021
    Assignee: LENSVECTOR INC.
    Inventor: Tigran Galstian
  • Patent number: 11042064
    Abstract: A method of wafer level manufacturing, separating and electrical connection of liquid crystal optical devices is disclosed. An electro-optic device having at least one liquid crystal cell for providing spatially variable control of light is also described.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: June 22, 2021
    Assignee: Lensvector Inc.
    Inventors: Tigran Galstian, Aram Bagramyan, Amir Tork
  • Patent number: 11035552
    Abstract: A variable light beam is provided from a light source. The light source can be an LED light source or other source. The light source includes basic collimation optics, such as reflector or Fresnel lens, an electrically controllable LC device, such as a polydisperse LC film, in front of the incident spot light beam. Preferably the polydisperse LC film includes transparent flat uniform electrode layers. The LC device can be autonomous of the light source. The proposed solution provides a dynamically controllable, preferably polarizer-free and pixel-free, beam shape light source module including a controllable light beam control module and a light source module providing the initial light beam in a scanner light source, a camera flash, an architectural, automobile or industrial lighting device.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: June 15, 2021
    Assignee: LensVector Inc.
    Inventors: Tigran Galstian, Karen Asatryan, Vladimir Presniakov, Armen Zohrabyan, Jacques Godin
  • Patent number: 10845672
    Abstract: Liquid crystal light beam broadening devices and their manufacture are described. Beneficial aspects of beam broadening devices employed for controlled illumination and architectural purposes are presented including providing symmetric beam broadening, improving the beam intensity profile, beam divergence preconditioning and improving projected beam intensity uniformity. Both beam control devices having in-plane and homeotropic ground state liquid crystal alignment are presented.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: November 24, 2020
    Assignee: LENSVECTOR INC.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Armen Zohrabyan
  • Patent number: 10747084
    Abstract: A liquid crystal optical device is described configured to provide variable beam steering or refractive Fresnel lens control over light passing through an aperture of the device. The device includes at least one layer of liquid crystal material contained by substrates having alignment layers. An arrangement of electrodes is configured to provide a spatially varying electric field distribution within a number of zones within the liquid crystal layer. The liquid crystal optical device is structured to provide a spatial variation in optical phase delay with a transition at a boundary between zones which is an approximation of a sawtooth waveform across the boundaries of multiple zones. The arrangement of electrodes, device layered geometry and methods of driving the electrodes increase the effective aperture of the overall optical device.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: August 18, 2020
    Assignee: LENSVECTOR INC.
    Inventors: Tigran Galstian, Karen Asatryan, Armen Zohrabyan, Marco Thiboutot, Vladimir Presniakov
  • Patent number: 10561492
    Abstract: A reprogrammable intraocular adaptive lens prosthesis apparatus is provided. The apparatus includes a tunable liquid crystal lens (TLCL) encapsulated in the intraocular prosthesis with control electronics and a power source or in the intraocular prosthesis with a control signal receiver while an external control electronics package transmits the control signal. The TLCL is driven in response to a stimulus signal to provide accommodation. The TLCL corrects other visual shortcomings of the natural eye. The intraocular prosthesis has a remote programmable TLCL controller configured to recalibrate the TLCL to compensate for dynamic adaptation of the eye over time.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: February 18, 2020
    Assignee: LENSVECTOR INC.
    Inventors: Tigran Galstian, Howard Earhart
  • Patent number: 10503042
    Abstract: A liquid crystal optical device is provided including at least two LC cells. A first LC cell layer has a predominant director orientation imparting a transversally non-uniform phase delay to a first polarization of an unpolarized incident light field passing therethrough while incident light of a second polarization orthogonal to the first light polarization passes therethrough undergoing transversally uniform phase delay. The first LC cell is configured to project a center extraordinary ray onto an optical axis of the device at the image surface. A second LC cell layer has a predominant director oriented orthogonally to the other predominant director in a plane perpendicular to the optical axis. The second LC layer imparts a transversally non-uniform phase delay to the second polarization of the incident light passing therethrough, the second LC cell being configured to project a center ordinary ray onto the optical axis at the image surface.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: December 10, 2019
    Assignee: LENSVECTOR INC.
    Inventors: Peter Clark, Tigran Galstian, Karen Asatryan, Vladimir Presniakov, Aram Bagramyan, Amir Tork, Armen Zohrabyan, Simon Careau
  • Patent number: 10359686
    Abstract: A liquid crystal optical device is described configured to provide variable beam steering or refractive Fresnel lens control over light passing through an aperture of the device. The device includes at least one layer of liquid crystal material contained by substrates having alignment layers. An arrangement of electrodes is configured to provide a spatially varying electric field distribution within a number of zones within the liquid crystal layer. The liquid crystal optical device is structured to provide a spatial variation in optical phase delay with a transition at a boundary between zones which is an approximation of a sawtooth waveform across the boundaries of multiple zones. The arrangement of electrodes, device layered geometry and methods of driving the electrodes increase the effective aperture of the overall optical device.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 23, 2019
    Assignee: LENSVECTOR INC.
    Inventors: Tigran Galstian, Karen Asatryan, Armen Zohrabyan, Marco Thiboutot, Vladimir Presniakov
  • Patent number: 10285803
    Abstract: An ocular adaptive lens prosthesis apparatus is provided. In some implementations the apparatus includes a tunable liquid crystal lens encapsulated in the ocular prosthesis with control electronics and a power source. The tunable liquid crystal lens is driven in response to a convergence signal to provide accommodation. In some embodiments the tunable liquid crystal device corrects other visual shortcomings of the natural eye. The ocular prosthesis has a remote programmable tunable liquid crystal lens controller configured to recalibrate the tunable liquid crystal lens to compensate for dynamic adaptation of the eye over time. A coil is employed to transmit a convergence signal between a pair of ocular prostheses in a dual eye vision correction system.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: May 14, 2019
    Assignee: LENSVECTOR INC.
    Inventors: Tigran Galstian, Denis Brousseau
  • Patent number: 10234710
    Abstract: An electro-optic device having at least one liquid crystal cell for providing spatially variable control of light includes: a pair of opposed substrates sandwiching a liquid crystal layer therebetween; a pair of electrodes for applying an electric field therebetween, each electrode being deposited on a corresponding substrate; and a liquid crystal reservoir wall defining a lateral extent of the liquid crystal layer between the substrates. The reservoir wall includes: a first bottom barrier deposited on a bottom one of the pair of substrates; and a second curable top barrier deposited on the top substrate outside the first barrier. The first barrier and second uncured barrier are configured to merge on contact to retain liquid crystal material inside the reservoir wall prior to curing the second barrier. Also, a method of wafer level manufacturing and assembly of a liquid crystal optical device.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: March 19, 2019
    Assignee: LENSVECTOR INC.
    Inventors: Tigran Galstian, Aram Bagramyan, Amir Tork, David Yoon, Sergei Yakovenko
  • Patent number: 10126607
    Abstract: Liquid crystal light beam control devices and their manufacture are described. Beneficial aspects of beam broadening devices employed for controlled illumination and architectural purposes are presented including improving beam divergence control, improving beam broadening dynamic range control, beam divergence preconditioning, improving projected beam intensity uniformity.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: November 13, 2018
    Assignee: LENSVECTOR INC.
    Inventors: Vladimir Presniakov, Karen Asatryan, Armen Zohrabyan, Tigran Galstian, Aram Bagramyan, Simon Careau
  • Patent number: 10098727
    Abstract: An intraocular adaptive lens prosthesis apparatus is provided. In some implementations the apparatus includes a tunable liquid crystal lens encapsulated in the intraocular prosthesis with control electronics and a power source. In other implementations the apparatus includes a tunable liquid crystal lens encapsulated in the intraocular prosthesis with a control signal receiver while an external control electronics package transmits the control signal. The tunable liquid crystal lens is driven in response to a stimulus signal to provide accommodation. In some embodiments the tunable liquid crystal device corrects other visual shortcomings of the natural eye.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: October 16, 2018
    Assignee: LensVector Inc.
    Inventor: Tigran Galstian
  • Patent number: 9989822
    Abstract: An apparatus for controlling light transmission from an optical input to an optical output can function as a tunable iris or eclipse, or as a privacy window. The iris/eclipse can use a liquid crystal matrix with a dispersion of dichroic particles that absorb light in one orientation and transmit light in another, such that controlling the liquid crystal with an electric field allows control of the dichroic particles. Alternatively, a layer may be used with a light absorbing liquid or powder material that moves with a charged material in response to a variable electric field applied to the layer. Privacy windows use a plurality of liquid crystal microlenses that can be controlled with an electric field to allow an image of an optical input to be obtainable at an optical output when in a first state, or to render the image irretrievable when in a second state.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: June 5, 2018
    Assignee: LENSVECTOR, INC.
    Inventor: Tigran Galstian
  • Patent number: 9910246
    Abstract: An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: March 6, 2018
    Assignee: LENSVECTOR INC.
    Inventors: Armen Zohrabyan, Tigran Galstian, Karen Asatryan, Vladimir Presniakov, Marco Thiboutot, Aram Bagramyan, Amir Tork, Jeffrey James Parker, Ted Cooper, Behzad Khodadad, Gongjian Hu, Chong I Cheang
  • Patent number: 9904086
    Abstract: A variable liquid crystal optical device for controlling the propagation of light has one or more transparent thin-film highly-resistive layer (HRL) coupled to a substrate and an electrode structure. The HRL has core layer and a cover or proximity layer, wherein the core layer material has a higher electrical conductivity and higher refractive index than the cover layer material; and wherein the core and cover layer materials have substantially the same free energies of formation of oxide. In this way, the electrode structure will be environmentally stable and responsive to an applied electrical current to generate a spatially non-uniform magnetic field.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 27, 2018
    Assignee: LENSVECTOR INC.
    Inventors: Tigran Galstian, Jean-François Viens, Amir Tork
  • Patent number: 9874774
    Abstract: Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described. Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes. Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate. The effect of device operation on incident light is optically sensed. The sensed effect is analyzed to identify device defects. Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: January 23, 2018
    Assignee: LENSVECTOR INC.
    Inventors: Bahram Afshari, Karen Asatryan, Peter P Clark, Tigran Galstian, Michael J. Nystrom, Vladimir Presniakov, Sergei Yakovenko, Armen Zohrabyan
  • Patent number: 9833312
    Abstract: A liquid crystal optical device is provided, including a layered structure including at least two support substrates. An external hole patterned control electrode is provided on one of the substrates and has an aperture. An internal hole patterned control electrode is provided on one of the substrates within the aperture, the internal and outer control electrodes being separated by a gap, which forms part of the aperture. A weakly conductive material is provided on one of the substrates over the aperture. A planar transparent electrode is provided on another one of the substrates. An alignment surface is provided on the substrates over the electrodes. A layer of liquid crystal material is contained by the substrates and in contact with the alignment surface of the substrates. A floating transparent electrode is provided on a side of one of the substrates opposite the outer and the internal hole patterned electrode.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: December 5, 2017
    Assignee: LENSVECTOR INC.
    Inventors: Tigran Galstian, Karen Asatryan, Vladimir Presniakov, Aram Bagramyan, Amir Tork, Armen Zohrabyan, Simon Careau
  • Patent number: 9798217
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The drive signal source uses pulse-width modulation to set a frequency and an amplitude of the drive signal.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: October 24, 2017
    Assignee: LensVector Inc.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabyan, Aram Bagramyan
  • Publication number: 20170160600
    Abstract: A variable liquid crystal optical device for controlling the propagation of light has one or more transparent thin-film highly-resistive layer (HRL) coupled to a substrate and an electrode structure. The HRL has core layer and a cover or proximity layer, wherein the core layer material has a higher electrical conductivity and higher refractive index than the cover layer material; and wherein the core and cover layer materials have substantially the same free energies of formation of oxide. In this way, the electrode structure will be environmentally stable and responsive to an applied electrical current to generate a spatially non-uniform magnetic field.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 8, 2017
    Applicant: LENSVECTOR INC.
    Inventors: Tigran GALSTIAN, Jean-François VIENS, Amir TORK