Abstract: A process for concentrating a maple sap or sweet vegetal water solution is provided. The process comprises collecting the solution in a tank at temperature T1, wherein T1 is between 4° C. and 10° C.; concentrating the solution by means of a reverse osmosis concentrator to produce a high Brix solution of about 15 to about 40 Brix; heating the high Brix solution of about 15 to about 40 Brix to temperature T2, wherein T2 is between 40° C. and 85° C.; and evaporating the high Brix solution by means of a vacuum evaporator at temperature T3 to produce the concentrated product of about 60 to about 70 Brix, wherein T3 is between 55° C. and 80° C. A system for concentrating a maple sap or sweet vegetal water solution is provided, as well as a concentrated product produced by the process of the present invention.
Abstract: A self-cleaning system for a plate press (100) or cylinder press (110) for filtering a fluid product and for eliminating waste material accumulated on filter membranes (13) in a waste accumulation area (102) of the plate press (100) or cylinder press (110), said system comprising a drain port (DP) adjacent to the waste accumulation area (102), said system comprising an area (103) creating a circulation of water and/or forced air jets within the waste accumulation area (102) to expel the waste to the drain port (DP), whereby the waste accumulation area (102) is cleaned from the waste material without having to disassemble the plate press or cylinder press.
Abstract: The disclosure herein describes a device for use in a sap collecting system which is formed of a body of fluid impermeable composition that has a passageway for allowing sap to circulate therethrough; the composition consists of a plastics material and of a plurality of randomly distributed non corrosive hard granules. The granules have a hardness to repress rodent animals to pierce the plastics material and are so distributed in the plastic material that at least one granule will be contacted when the body is gnawed by a rodent animal.