Patents Assigned to Lexmark International, Inc.
  • Patent number: 10606182
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 31, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale
  • Patent number: 10606199
    Abstract: An image forming device includes a controller and a power supply unit in communication with the controller. The power supply unit includes a voltage converter for supplying voltage to a component of the image forming device. A memory unit on the voltage converter stores characterization data specific to the voltage converter having been characterized during production of the power supply unit and defining a predefined voltage response characteristic of the voltage converter. The controller is configured to selectively adjust a voltage response of the voltage converter to deviate away from the predefined voltage response characteristic based on a detected error condition relating to a replaceable unit installed in the image forming device. When the error condition has been corrected, the controller is configured to adjust the voltage response of the voltage converter to the predefined voltage response characteristic.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: March 31, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventor: Don Dexter A. Antonio
  • Patent number: 10606181
    Abstract: The toner composition of the present invention and method to make the same includes toner particles mixed with a specific set of extra particulate additives including large colloidal silica sized 90 nm to 120 nm and having a conductivity of less than 20 ?s/cm in combination with medium size silica particles sized 30 nm to 60 nm. Optionally, additional extra particular additives such as silica sized 2 nm to 20 nm, alumina, titania or mixtures thereof can be used. The finished toner having these specific additives exhibited superior printing performance.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: March 31, 2020
    Assignee: Lexmark International, Inc.
    Inventors: Kasturi Rangan Srinivasan, Rick Owen Jones, Courtney Harrison Soale, Devon Jean Vaccaro Strain, Ligia Aura Bejat
  • Patent number: 10591862
    Abstract: An imaging system having methods for reducing churn in an imaging device which includes identifying a number of unproductive revolutions made in a print engine of the imaging device, determining whether the number of unproductive revolutions exceeds a predetermined threshold, and performing at least one of: using a predetermined speed limit when printing a page and disabling a function in the imaging device upon the determination that the number of unproductive revolutions exceeds the predetermined threshold.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC
    Inventors: Douglas Anthony Able, Kevin Dean Schoedinger
  • Patent number: 10591846
    Abstract: A replaceable unit for an electrophotographic image forming device according to one example embodiment includes a housing having a reservoir for storing toner. A rotatable shaft is positioned within the reservoir and has an axis of rotation. A first magnet and a second magnet are connected to the shaft and rotatable around the axis of rotation in response to rotation of the shaft. The first magnet and the second magnet are detectable by a magnetic sensor when the replaceable unit is installed in the image forming device. A polarity of the first magnet is oriented opposite a polarity of the second magnet relative to the shaft. An amount of angular offset between the first magnet and the second magnet varies depending on an amount of toner in the reservoir.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 17, 2020
    Assignee: Lexmark International, Inc.
    Inventors: Brian Scott Carpenter, Michael Craig Leemhuis, Robert Watson McAlpine
  • Patent number: 10591833
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Patent number: 10591835
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Patent number: 10591831
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale
  • Patent number: 10591834
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Patent number: 10591832
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale
  • Patent number: 10579003
    Abstract: An imaging device includes a photoconductive drum charged by a charge roll and opposed by a transfer roll to transfer an image from the drum. The drum becomes biased to a negative voltage by setting charges of negative voltage on both the charge roll and transfer roll. A controller switches the bias of the transfer roll to a positive voltage from the negative voltage and a delta or difference in a charge of the drum is determined from before and after the switching. Based on the delta, the voltage on the charge roll is boosted by a boost voltage to improve the charge on the drum. In this way, deteriorating or defective charge rolls can be still used to charge the drum to a proper voltage for imaging. Techniques for determining the delta, the boost and the magnitude of voltage charges are further embodiments.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: March 3, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Michael Brian Bacelieri, Douglas Anthony Able, Andrew Pryse Dale, Jared Kuohui Lin, Robert Watson McAlpine, Matthew Russell Smither
  • Patent number: 10571817
    Abstract: A method of curing a protective overcoat layer on the outermost portion of an organic photoconductor drum using dual curing process is provided. The first curing step applies either ionizing irradiation, such as with an electron beam or by gamma rays or applies non-ionizing irradiation such as ultraviolet light to the overcoated photoconductor drum. A mask or shield is sized to be placed over the print area of the initially cured photoconductor drum, thereby exposing the outermost edges of the photoconductor drum. The outer edges of the masked photoconductor drum is then exposed to a second curing step using non-ionizing irradiation such as ultraviolet light.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: February 25, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Weimei Luo, Mark Thomas Bellino, Rudolph Wayne Hrobsky
  • Patent number: 10571818
    Abstract: A method of preparing an organic photoconductor drum having a protective overcoat on its outermost surface is provided. In an example embodiment, a photoconductor drum having an electrically conductive substrate, a charge generation layer, a charge transport layer and an outermost protective overcoat layer is provided. The photoconductor drum is cured using a two-step process. The first curing step applies either ionizing irradiation, such as with an electron beam or by gamma rays or applies non-ionizing irradiation such as ultraviolet light to the photoconductor drum. A mask is sized and placed over the print area of the initially cured photoconductor drum, thereby exposing the outermost edges of the photoconductor drum. The outer edges of the masked photoconductor drum is then exposed to a second curing step using ultraviolet light irradiation.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: February 25, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Weimei Luo, Mark Thomas Bellino, Rudolph Wayne Hrobsky
  • Patent number: 10566296
    Abstract: In the invention described, magnetic field characteristics of randomly placed magnetized particles are exploited by using the magnetic field fluctuations produced by the particles as measured by a sensor. The magnetized particles generate a complex magnetic field near the surface of an integrated circuit chip on a bank card or identification card that can be used as a “fingerprint.” The positioning and orientation of the magnetized particles is an uncontrolled process, and thus the interaction between the sensor and the particles is complex. The randomness of the magnetic field magnitude and direction near the surface of the material containing the magnetic particles can be used to obtain a unique identifier for an item such as an integrated circuit chip on a bank card or identification card carrying the PUF.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 18, 2020
    Assignee: Lexmark International, Inc.
    Inventors: Roger Steven Cannon, William Corbett, Gary A. Denton, James Paul Drummond, Kelly Ann Killeen, Carl E. Sullivan
  • Patent number: 10542172
    Abstract: A supply item has toner for use in an imaging device. A chip has memory storing quanta indicating allowed usage of the supply item over its lifetime and a multiplier correlating the quanta to toner mass. The imaging device requires quanta to conduct imaging operations and loads the quanta and multiplier by way of a certificate stored in the memory. The imaging device retrieves quanta from the chip over time and both devices keep tally. Initialization between the supply item and imaging device includes providing encrypted and unencrypted instances of firmware versions and certificates from the supply item that the imaging device can compare for security. Alternatively, the supply item defines a fuser assembly, imaging unit, intermediate transfer member, or other component installed for use in the imaging device.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: January 21, 2020
    Assignee: Lexmark International, Inc.
    Inventors: Nathan Wayne Foley, Timothy John Rademacher, Jennifer Topmiller Williams, Gregory Scott Woods, Christopher Alan Adkins
  • Patent number: 10527969
    Abstract: A method of operating an electrophotographic image forming device according to one example embodiment includes, by rotating a motor in a first rotational direction of the motor, rotating an input gear of a toner container in a first rotational direction of the input gear causing a toner agitator in a toner reservoir of the toner container to move for agitating toner in the toner reservoir. By rotating the motor in a second rotational direction of the motor, the input gear of the toner container rotates in a second rotational direction of the input gear causing an encoded member on the toner container to move. A sensor in the electrophotographic image forming device senses identifying information of the toner container encoded on the encoded member during movement of the encoded member and rotation of the input gear of the toner container in the second rotational direction of the input gear.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: January 7, 2020
    Assignee: Lexmark International, Inc.
    Inventors: Randal Scott Williamson, Virgil Johnson, Jr.
  • Patent number: 10527967
    Abstract: A toner container includes a housing having a toner reservoir. An input gear is positioned on the housing for mating with a corresponding output gear in an image forming device when the toner container is installed in the image forming device. A toner agitator is movably positioned in the reservoir. The toner agitator is operatively connected to the input gear such that rotation of the input gear in a first rotational direction causes movement of the toner agitator for agitating toner in the reservoir. An encoded member is encoded with authentication information of the toner container and is operatively connected to the input gear such that rotation of the input gear in a second rotational direction causes movement of the encoded member for communicating the authentication information of the toner container to a controller of the image forming device when the toner container is installed in the image forming device.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: January 7, 2020
    Assignee: Lexmark International, Inc.
    Inventors: Randal Scott Williamson, Virgil Johnson, Jr.
  • Patent number: 10530959
    Abstract: A toner container installable in an image forming device having a controller according to one example embodiment includes a housing having a reservoir for storing toner. A chip is positioned on the housing and configured to receive a first write command from the controller of the image forming device. The chip is further configured to determine whether a transmission cycle bit of the first write command matches a transmission cycle bit of a second write command received by the chip from the controller of the image forming device previous to the first write command. The chip is further configured to resend to the controller of the image forming device a response to the second write command if the transmission cycle bit of the first write command matches the transmission cycle bit of the second write command.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: January 7, 2020
    Assignee: Lexmark International, Inc.
    Inventors: Nathan Wayne Foley, Jennifer Topmiller Williams, Gregory Scott Woods, Jimmy Daniel Moore, Jr.
  • Patent number: 10495998
    Abstract: A chemically prepared multilayered toner composition, according to one example embodiment, includes a core having a first amorphous polyester resin, a second amorphous polyester resin, a colorant, and a release agent. A first layer is formed around the core wherein the first layer includes the same second amorphous polyester resin that is in the toner core. A second layer is formed on the surface of the first layer, wherein the second layer includes a third amorphous polyester resin. A borax coupling agent is between the first and second layers. In an embodiment the ratio of the second polymer in the core to second polymer in the first layer is about 50:50. The second layer can also be referred to as a shell that is formed over the toner particle having a center core, first layer and borax coupling agent. In another embodiment, the core does not contain a second amorphous polyester resin.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: December 3, 2019
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Jing X Sun, Corey Marcus Moran, Cory Nathan Hammond, Aaron Michael Dahlke
  • Patent number: 10495999
    Abstract: A chemically prepared multilayered toner composition, according to one example embodiment, includes a core having a first amorphous polyester resin, a second amorphous polyester resin, a colorant, and a release agent. A first layer is formed around the core wherein the first layer includes the same second amorphous polyester resin that is in the toner core. A second layer is formed on the surface of the first layer, wherein the second layer includes a third amorphous polyester resin. A borax coupling agent is between the first and second layers. In an embodiment the ratio of the second polymer in the core to second polymer in the first layer is about 50:50. The second layer can also be referred to as a shell that is formed over the toner particle having a center core, first layer and borax coupling agent. In another embodiment, the core does not contain a second amorphous polyester resin.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: December 3, 2019
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Jing X Sun, Corey Marcus Moran, Cory Nathan Hammond, Aaron Michael Dahlke