Abstract: An apparatus for fabricating a liquid crystal display includes a vessel for containing a material for a spacer, an ink-jet head for jetting the material onto a plate and a light source for pre-curing the material by radiating light onto the material as the material is jetted from the ink-jet head. A method for fabricating a liquid crystal display includes the steps of aligning an ink-jet device relative to at least one of an upper plate and a lower plate, jetting a material for a spacer from the ink-jet device and pre-curing the material by irradiating the material with light while the material is jetted from the ink-system before the material impacts upon the at least one of the upper plate and a lower plate.
Abstract: A dual panel-type organic electroluminescent display device includes first and second substrates facing and spaced apart from each other, an array element layer disposed along an inner surface of the first substrate, the array element including a thin film transistor, a connection pattern disposed on the array element layer and electrically connected to the thin film transistor, a color filter layer disposed along an inner surface of the second substrate, the color filter layer including red, green, and blue color filters, an overcoat layer disposed on the color filter layer, the overcoat layer including a hygroscopic material, an organic electroluminescent diode disposed on the overcoat layer and connected to the connection pattern, the organic electroluminescent diode including a first electrode, an organic light-emitting layer, and a second electrode sequentially formed on the overcoat layer, and the organic light-emitting layer emits substantially monochromatic light, and a seal pattern along peripheral p
Abstract: An apparatus and method of driving a flat panel display device is disclosed, to prevent the appearance of afterimages on the flat panel display, the apparatus comprising an image displaying unit which includes a plurality of pixel cells in regions defined by a plurality of gate and data lines on a display panel; and an means formed on the display panel to be connected with the respective gate lines, wherein the means carries out an inspection or discharges electric charges from the image displaying unit when a system power is turned-off, wherein the electric charges are discharged from the image displaying unit by detecting the turning-off point of system power so as to remove the afterimage from the image displaying unit.
Abstract: A liquid crystal display device and a method of fabricating the same are disclosed in the present invention. The liquid crystal display device includes a first substrate having a thin film transistor array and a common line with a UV-ray irradiation path passing UV-rays, a second substrate having a color filter array, a sealant between the first and second substrates over the common line, and a liquid crystal layer between the first and second substrates.
Type:
Grant
Filed:
October 4, 2006
Date of Patent:
February 26, 2008
Assignee:
LG.Philips LCD Co., Ltd
Inventors:
Jong Woo Kim, Sung Chun Kang, Young Hun Ha
Abstract: A method and apparatus for driving a liquid crystal display (LCD) panel having pixels arranged in a matrix pattern, wherein each pixel includes two sub-pixels capable of transmitting complementary colors, includes a light source array having first to third light sources and a data driver for applying data signals to the LCD panel during first and second sub-frames of the LCD panel, wherein the first and second sub-frames constitute a single frame of the LCD panel. Two of the first to third light sources may be activated during each sub-frame to emit light to the liquid crystal display panel, wherein a full color image is realized in only two sub-frames.
Abstract: A fabricating method of a flat panel display includes the steps of spreading an etch-resist on a thin film formed on a substrate, a polarity of the etch-resist changed by irradiation with a first light; providing a soft mold having a projected surface and a groove at an upper surface of the etch-resist at a distance from the substrate, the soft mold surface treated to be the same polarity as the etch-resist; performing a first and a second alignments of the soft mold and substrate; changing the polarity of the etch-resist by irradiation with the first light such that the etch-resist moves into a groove of the soft mold; forming an etch-resist pattern by irradiating a second light onto the etch-resist in the groove; separating the soft mold from the etch-resist pattern; and forming a thin film pattern by etching a portion of the thin film and the etch-resist pattern.
Abstract: An in-plane switching mode liquid crystal display device including first and second substrates having an array region and a sealant region along a periphery of the array region, a sealant in the sealant region attaching the first and second substrates, a metallic black matrix formed in the sealant region and in the array region of the first substrate, a color filter on the metallic black matrix, an organic layer on the color filter and a liquid crystal layer between the first and second substrates.
Abstract: A liquid crystal display device includes a liquid crystal cell, a first polarizer under the liquid crystal cell, a backlight under the first polarizer, and a holographic diffuser over the liquid crystal cell. The holographic diffuser includes a spacer and a diffusing layer over the spacer. The spacer includes an open portion and a lower surface of the diffusing layer includes a holographic pattern.
Abstract: A touch panel display apparatus includes an upper sheet having an upper transparent film formed of one of a crystalline transparent conductive material and an amorphous transparent conductive material, and a lower sheet having a lower transparent film formed of one of an other one of the crystalline transparent conductive material and the amorphous transparent conductive material.
Abstract: A laser annealing apparatus for sequential lateral solidification (SLS) to uniformly crystallize silicon on an entire silicon substrate by minimizing the dislocation of the silicon substrate during laser beam irradiation is disclosed. During the laser annealing, a vacuum chuck holds the silicon substrate on a movable stage. The device includes a laser source, an optical system patterning the shape and energy of a laser beam irradiated from the laser source, a vacuum chuck supporting a silicon substrate, and a movable stage supporting the vacuum chuck as well as transferring the vacuum chuck in a predetermined direction. Accordingly, the apparatus improves the degree of crystallization because it is able to uniformly carry out SLS on an entire surface of the silicon substrate.
Abstract: A flat light-emitting lamp includes a first common discharge unit for producing a first electrical discharge according to a first AC waveform having a first phase, a second common discharge unit for producing a second electrical discharge according to a second AC waveform having a second phase different from the first phase, and a plurality of discharge tubes each having first ends connected to the first common discharge unit and second ends connected to the second common discharge unit. The discharge tubes emit light according to the electrical discharges of the first and second common discharge units.
Abstract: The present invention is related to a method of fabricating a liquid crystal display device which includes etching an attached substrate using an etchant to make the substrate thin and light. A plurality of main seal patterns are formed on a first substrate and auxiliary seal patterns are formed around each main seal pattern. Thereafter, a second substrate is attached to the first substrate by pressure. Then, an anti-etching material is formed around the sidewalls of the attached substrates. Due to the anti-etching material, an etchant etching the surfaces of the attached substrate does not penetrate into the interval between the first and second substrates.
Abstract: An LCD device and a method for driving the device reduces power consumption by transmitting data by using at least two clock signals having different phases. The LCD device displays a picture image by driving an LCD panel that includes multiple source drivers applying data signals to the LCD panel. Multiple gate drivers apply gate driving signals to the LCD panel, a timing controller outputs at least two clock signals having different phases and separately outputs data synchronized with each output signal, and at least two data buses transmit the data separately output from the timing controller to the source drivers. The method for driving the LCD device includes outputting at least two clock signals having different phases, and separately outputting the digital data synchronized with respective clock signals per odd/even numbered data or R/G/B display data through different data buses.
Abstract: A semiconductor device includes a substrate having source and drain regions, a gate insulating layer on the substrate, a gate electrode on the gate insulating layer, an interlayer on the gate electrode, a source electrode connected to the source region, and a drain electrode connected to the drain region, wherein at least one of the gate electrode, the source electrode and the drain electrode includes a first metal layer of molybdenum (Mo)-titanium (Ti) alloy, a second metal layer of one of metallic metals including copper (Cu), aluminum (Al), silver (Ag) and gold (Au) on the first metal layer.
Type:
Grant
Filed:
October 15, 2004
Date of Patent:
February 26, 2008
Assignee:
LG.Philips LCD Co., Ltd.
Inventors:
Jin-Young Kim, Gyoo-Chul Jo, Kyu-Tae Lee, Beung-Hwa Jeong, Jin-Gyu Kang
Abstract: An LCD device and a method of driving the same are disclosed, to improve a picture quality by realizing a rapid response speed, wherein the LCD device comprises an image display part which includes liquid crystal cells formed in respective regions defined by a plurality of gate and data lines; a timing controller which modulates data inputted according to a first frame frequency to modulation data to realize a rapid response speed of liquid crystal, and outputs the modulation data or data to a second frame frequency; a gate driver which generates gate on voltages under control of the timing controller, and supplies the gate on voltages to the gate lines in sequence; and a data driver which converts the modulation data or data supplied from the timing controller to a data voltage, and supplies the data voltage to the data line in synchronization with the gate on voltage.
Abstract: A liquid crystal display device includes a back light assembly that emits light on a liquid crystal panel; and an inverter that controls brightness of the light emitted from the back light assembly according to a difference between video data of at least three frames that are sequentially inputted to the liquid crystal panel.
Abstract: An array substrate for a liquid crystal display device includes a gate line and a data line crossing each other on a substrate to define a pixel region, an insulating layer between the gate line and the data line, a gate electrode extending from the gate line, and a transistor in the pixel region having an active layer on the insulating layer, ohmic contact layers of a first material that are adjacent to ends of the active layer, buffer layers of a second material, which is different from the first material, on the ohmic contact layers, a source electrode contacting one of the buffer layers and a drain electrode contacting another one of the buffer layers, wherein the active layer is in an island shape over the gate electrode and within a boundary defined by a perimeter of the gate electrode.
Abstract: A method for fabricating a liquid crystal panel includes providing first and second mother substrates having a plurality of panel regions, forming a plurality of array substrates in the plurality of panel regions of the first mother substrate, forming a plurality of color filter substrates in the panel regions of the second mother substrate, forming a first alignment film over the first mother substrate, rubbing the first alignment film covering the first mother substrate, attaching the first and second mother substrates, and cutting the attached mother substrates into a plurality of liquid crystal panels.
Abstract: A transflective liquid crystal display device includes a first substrate, a second substrate, a liquid crystal layer, and a pixel electrode. The first substrate has a thin film transistor and the second substrate has a color filter and faces the first substrate. The liquid crystal layer is disposed between the first and the second substrates. The pixel electrode is disposed above the first substrate and electrically connected to the thin film transistor. The transflective liquid crystal display device further includes a pixel region. The pixel region is divided into a transmit part and a reflective part, and the reflective part includes a first region and a second region. The pixel electrode extends to the transmit part and only the second region of the reflective part.
Type:
Application
Filed:
June 27, 2007
Publication date:
February 21, 2008
Applicant:
LG. PHILIPS LCD CO., LTD.
Inventors:
Ku Hyun Park, Jong Hwae Lee, Hyun Ho Kim
Abstract: An array substrate includes a substrate, a gate line disposed along a first direction on the substrate, and a common line is parallel to the gate line, the common line being of the same material as the gate line. A gate insulating layer is on the gate and common lines, a semiconductor layer is on the gate insulating layer and a transparent pixel electrode includes a drain electrode portion. The drain electrode portion overlaps the semiconductor. A passivation layer includes a first contact hole and an open portion over the pixel and source electrodes, the first contact hole exposing the source electrode and the open portion exposing the pixel electrode, respectively. A data line is disposed along a second direction on the passivation layer, and the data line connected to the source electrode through the first contact hole and crossing the gate line.