Abstract: An analyte, system, strip and method are described. In one example, an analyte test strip is provided that includes a substrate, electrically conductive material and an isolated portion of the electrically conductive material. The substrate has a generally planar surface that extends from a first end to a second end. The electrically conductive material is disposed on the generally planar surface to define a plurality of electrodes spaced apart from each other. The isolated portion of the electrically conductive material is disposed between at least two electrodes so that the isolated portion is not in electrical communication with the plurality of electrodes.
Type:
Application
Filed:
September 4, 2007
Publication date:
March 5, 2009
Applicant:
LifeScan, Inc.
Inventors:
Maria Teodorczyk, Remedios Dato, Koon-wah Leong
Abstract: Electrochemical test strips and methods for their use in the detection of an analyte in a physiological sample are provided. The subject test strips have a reaction zone defined by opposing metal electrodes separated by a thin spacer layer. The metal surface of at least one of the electrodes is modified by a homogenous surface modification layer made up of linear self-assembling molecules having a first sulfhydryl end group and a second sulfonate end group separated by a short chain alkyl linking group, where 2-mercaptoethane sulfonic acid or a salt thereof is preferred in certain embodiments. The subject electrochemical test strips find application in the detection of a wide variety of analytes, and are particularly suited for use the detection of glucose.
Abstract: System, circuits, and methods to reduce or eliminate uncompensated voltage drop between an electrode of an electrochemical cell usable for analyte measurement. In one example, a system is provided that includes a test strip, a reference voltage circuit, an operational amplifier connected to the reference voltage circuit to provide a predetermined fraction of a reference voltage substantially equal to the test voltage applied to the first line, the operational amplifier having an output configured for one of a connected or disconnected state to the first line, and a processing circuit connected to the output of the operational amplifier and the first line such that, during a disconnected state between the output and the first line, the processing circuit remains in connection with the first line.
Type:
Application
Filed:
July 25, 2007
Publication date:
January 29, 2009
Applicant:
LifeScan, Inc.
Inventors:
Mahyar Z. Kermani, Edward Docherty, John McInulty
Abstract: The present invention relates to electrochemical cells including a first working electrode 32, a first counter electrode 34, a second working electrode 36, and a second counter electrode 38, wherein the electrodes are spaced such that reaction products from the first counter electrode 34 arrive at the first working electrode 32, and reaction products from the first and second counter electrodes 34, 38 do not reach the second working electrode 36. Also provided is a method of using such electrochemical cells for determining the concentration of a reduced or oxidized form of a redox species with greater accuracy than can be obtained using an electrochemical cell having a single working and counter electrode.
Abstract: The present invention relates, in general, to lancing elements for use in drawing bodily fluids out of a patient and, more particularly, to an improved lancing element including first and second elements positioned relative to each other such that an incision formed by the first element is held open by the second element and bodily fluids are pulled up the lancing element by surface tension on the first and second lancing elements.
Abstract: A system and method of processing a test current for an analyte measurement in a fluid using a test strip and a test meter are disclosed. The method comprises sampling the test current at a pre-determined sampling rate to acquire a plurality of A/D conversions. The method also comprises filtering out at least a highest magnitude A/D conversion and a lowest magnitude A/D conversion leaving a plurality of accepted A/D conversions. Further, the method comprises calculating an average or a summation of the plurality of accepted A/D conversions and converting the average or the summation into a glucose concentration.
Type:
Grant
Filed:
October 17, 2005
Date of Patent:
December 23, 2008
Assignee:
Lifescan, Inc.
Inventors:
Ulrich Kraft, James Christol, Manfred Ebner
Abstract: An electrochemical glucose sensor comprising a base substrate, a conductive layer disposed on said base substrate, where said conductive layer comprises a reference electrode and at least two working electrodes; an insulation layer disposed on a part of said conductive layer, a reagent layer disposed on said working electrodes and on at least a part of said reference electrode, an adhesive layer disposed on a portion of said reagent layer and conductive layer wherein said adhesive layer substantially defines an area of said reference electrode which can be wetted by a liquid sample and said insulation layer substantially defines an area of said working electrodes which can be wetted by a liquid sample.
Type:
Grant
Filed:
June 2, 2004
Date of Patent:
December 9, 2008
Assignee:
Lifescan, Inc.
Inventors:
Christopher Philip Leach, Erica Mary Beck
Abstract: The present invention relates to electrochemical cells including a first working electrode 32, a first counter electrode 34, a second working electrode 36, and a second counter electrode 38, wherein the electrodes are spaced such that reaction products from the first counter electrode 34 arrive at the first working electrode 32, and reaction products from the first and second counter electrodes 34, 38 do not reach the second working electrode 36. Also provided is a method of using such electrochemical cells for determining the concentration of a reduced or oxidized form of a redox species with greater accuracy than can be obtained using an electrochemical cell having a single working and counter electrode.
Abstract: A biosensor for use in determining a concentration of a component in an aqueous liquid sample is provided including: an electrochemical cell having a first electrically resistive substrate having a thin layer of electrically conductive material, a second electrically resistive substrate having a thin layer of electrically conductive material, the substrates being disposed with the electrically conductive materials facing each other and being separated by a sheet including an aperture, the wall of which aperture defines a cell wall and a sample introduction aperture whereby the aqueous liquid sample may be introduced into the cell; and a measuring circuit.
Type:
Grant
Filed:
May 12, 2004
Date of Patent:
October 7, 2008
Assignee:
LifeScan, Inc.
Inventors:
Alastair Hodges, Thomas W. Beck, Oddvar Johansen, Ian Andrew Maxwell
Abstract: A system for implementing a wide-range of glycemic control protocols (e.g., Tight Glycemic Control protocols) in an automated, semi-closed or closed loop manner thereby eliminating common sources of system error is provided herein. More specifically, the system can include a blood glucose measuring device in communication with a wide-range of databases and/or interfaces thereby allowing for typically independent steps such as patient testing, result determination, protocol adjustment (suggestions as well as actual calculations of new dosages), meal information, scheduling of future testing in light of test results, and administration of medicine to be performed automatically in a semi-closed or closed loop manner. Furthermore, the system provides for ultimate flexibility by allowing a protocol administrator to continuously add, subtract, and/or modify various steps of the protocol while maintaining the integrity and safety of the system.
Type:
Application
Filed:
December 12, 2007
Publication date:
September 4, 2008
Applicant:
LIFESCAN, INC.
Inventors:
Kirk C. Harmon, Anthony P. Furnary, William Yu, Stanley Telson, Paul Hausman
Abstract: The present invention is directed to a method of reducing false readings in a hypoglycemic detector that includes establishing a predetermined hypoglycemic threshold, a predetermined critical threshold, a predetermined rate of change in glucose concentration where the predetermined critical threshold is below the predetermined hypoglycemic threshold. A first sampling rate is then calculated based upon said predetermined hypoglycemic threshold, said predetermined critical threshold, and said predetermined rate of change in glucose concentration.
Type:
Application
Filed:
October 30, 2007
Publication date:
August 28, 2008
Applicant:
LifeScan, Inc
Inventors:
Sharbel E. NOUJAIM, David Horwitz, Manoj Sharma, Joseph Marhoul
Abstract: The present invention relates to a method and a device for transporting a molecule through a mammalian barrier membrane of at least one layer of cells comprising the steps of: ablating said membrane with a shear device; and utilizing a driving force to move said molecule through said perforated membrane.
Type:
Grant
Filed:
April 30, 2001
Date of Patent:
July 29, 2008
Assignee:
Lifescan, Inc.
Inventors:
Nikiforos Kollias, Ying Sun, Anthony F. Coston
Abstract: A fusible conductive ink for use in manufacturing microfluidic analytical systems includes micronised powder containing platinum and carbon, poly(bisphenol A-co-epichlorohydrin)-glycidyl end capped polymer, and a solvent. In addition, the ratio of micronised powder to poly(bisphenol A-co-epichlorohydrin)-glycidyl end capped polymer is in the range of 3:1 to 1:3. The fusible conductive inks can be employed in the manufacturing of microfluidic systems to form electrodes, electrically conductive traces and/or electrically conductive contact pads.
Type:
Grant
Filed:
September 30, 2004
Date of Patent:
July 22, 2008
Assignee:
Lifescan, Inc.
Inventors:
James Iain Rodgers, Margaret Maclennan, James Moffat, Alan McNeilage
Abstract: Various methods and devices are provided for an electrokinetic infusion pump. In one embodiment of the invention, the infusion pump includes an infusion pump module, which can be configured to dispense an insulin containing infusion liquid, and an electrokinetic engine. The infusion pump module includes a capacitive displacement position sensor configured for sensing a dispensing state of the infusion pump module. The infusion pump module can include an infusion module housing and the electrokinetic engine can include a moveable partition. The capacitive displacement sensor includes a first capacitive plate disposed on the moveable partition and a second capacitive plate disposed on the infusion module housing. The capacitive displacement sensor is configured for measuring capacitance between the first capacitive plate and the second capacitive plate and can send a feedback signal to a closed loop controller that is indicative of the capacitance between the first and second capacitive plates.
Abstract: A method, system, and computer program product related to the maintenance of optimal control of diabetes, and is directed to predicting patterns of hypoglycemia, hyperglycemia, increased glucose variability, and insufficient or excessive testing for the upcoming period of time, based on blood glucose readings collected by a self-monitoring blood glucose device. The method, system, and computer program product pertain directly to the enhancement of existing home blood glucose monitoring devices, by introducing an intelligent data interpretation component capable of predicting and alerting the user to periods of increased risk for hyperglycemia, hypoglycemia, increased glucose variability, and ineffective testing, and to the enhancement of emerging self-monitoring blood glucose devices by the same features. With these predictions the diabetic can take steps to prevent the adverse consequences associated with hyperglycemia, hypoglycemia, and increased glucose variability.
Type:
Application
Filed:
November 20, 2007
Publication date:
June 26, 2008
Applicants:
UNIVERSITY OF VIRGINIA PATENT FOUNDATION, LIFESCAN, INC.
Inventors:
Boris P. Kovatchev, David Price, Erik Otto, Alan Coulson
Abstract: A method for preparing an electrokinetic element is provided and generally includes providing a porous membrane adapted for use in an electrokinetic pump and encapsulating the porous membrane within a polymer substrate to yield an electrokinetic element base member having the porous membrane encapsulated by the polymer. In one embodiment, the method can include laminating the porous membrane between opposed sheets of a polymer before the step of encapsulating. The method can also include cutting the electrokinetic element base member into a plurality of slices and assembling an electrokinetic infusion pump by inserting a slice into a chamber of the pump.
Type:
Application
Filed:
December 21, 2006
Publication date:
June 26, 2008
Applicant:
LifeScan, Inc.
Inventors:
Mingqi Zhao, Mark Huang, Stan Thomas, Peter Krulevitch